
Performance Per Watt Benefits of Dynamic Core Morphing in Asymmetric Multicores

Rance Rodrigues, Arunachalam Annamalai, Israel Koren, Sandip Kundu and Omer Khan†
Department of Electrical and Computer Engineering

University of Massachusetts at Amherst, University of Massachusetts at Lowell†
Email: {rodrigues, annamalai, koren, kundu}@ecs.umass.edu, Omer Khan@uml.edu†

Abstract—The trend toward multicore processors is moving the
emphasis in computation from sequential to parallel processing.
However, not all applications can be parallelized and benefit from
multiple cores. Such applications lead to under-utilization of parallel
resources, hence sub-optimal performance/watt. They may however,
benefit from powerful uniprocessors. On the other hand, not all
applications can take advantage of more powerful uniprocessors. To
address competing requirements of diverse applications, we propose a
heterogeneous multicore architecture with a Dynamic Core Morphing
(DCM) capability. Depending on the computational demands of the
currently executing applications, the resources of a few tightly coupled
cores are morphed at runtime. We present a simple hardware-based
algorithm to monitor the time-varying computational needs of the
application and when deemed beneficial, trigger reconfiguration of
the cores at fine-grain time scales to maximize the performance/watt
of the application. The proposed dynamic scheme is then compared
against a baseline static heterogeneous multicore configuration and an
equivalent homogeneous configuration. Our results show that dynamic
morphing of cores can provide performance/watt gains of 43% and
16% on an average, when compared to the homogeneous and baseline
heterogeneous configurations, respectively.

Keywords- Dynamic Core Morphing (DCM), Asymmetric Multicore
Processors (AMP), Instructions per cycle (IPC), Area-equivalent ho-
mogeneous multicore (HMG).

I. INTRODUCTION

The semiconductor industry has been driven by Moore’s law for
almost half a century. Miniaturization of device size has allowed
more transistors to be packed into a smaller area while the improved
transistor performance has resulted in a significant increase in
frequency. Increased density of devices and rising frequency led,
unfortunately, to a power density problem. The processor industry
responded to this problem by lowering processor frequency and
integrating multiple processor cores on a die [38]. Still, a multicore
die is limited by an overall power dissipation envelope that stems
from packaging and cooling technologies. Consequently, most
current multicores are composed of cores with relatively moderate
capabilities as integration of high performance cores will result in
higher cost and possibly breaching of heat dissipation limits.

For the majority of current applications, the capability of cores
found in today’s multicore systems is adequate. However, multicore
processors are focused more on supporting Thread Level Paral-
lelism (TLP) and hence sacrifice instruction throughput for certain
workloads [16], [32]. These workloads can benefit from more
powerful cores to support higher instruction throughput. In order to
achieve reasonable performance per watt, applications should have
(i) low execution times which implies high performance, and (ii)
low power. When sequential applications are encountered, higher
performance may be achieved by either designing more powerful
individual cores or by morphing the resources of a few simpler
cores when the need arises. However, incorporating complex cores
in a multicore system goes against the basic premise of multicores,

i.e., lowering the power density. Furthermore, resource and power
are frequently wasted whenever such workloads are not encoun-
tered. Hence, on-demand resource morphing may provide a better
alternative.

In general, multicore processors may be symmetric (SMP) or
asymmetric (AMP). It is well known that different workloads
require different processor resources for better performance per
watt. Some workloads are memory bound, some are integer inten-
sive, while some others are floating-point intensive. Thus, different
workloads benefit from different resources. Even within a work-
load, the resource requirements may vary with time due to changes
in program phases [3], [28]. Within a given resource budget, when
computing demands are matched with processor capabilities, AMPs
tend to perform better than SMPs [13], [18], [30]. The resource
matching problem of AMPs has been well documented [5]. This
problem is not limited to AMPs, as even SMPs may become asym-
metric under processor reconfiguration schemes such as Dynamic
Voltage and Frequency Scaling (DVFS) or partial shutdowns [25],
[37]. In principle, developing multithreaded applications for cores
performing at varying levels is notoriously difficult. Despite that,
AMPs are gaining traction from smart phones [26] to integrated
graphics processors [27] due to their power-performance benefits.
We propose to improve the efficiency of AMPs (in terms of perfor-
mance par watt) by adaptively matching the processor capability to
the computing needs of the executing threads. We do so by either
swapping threads between cores (of different capabilities) or by
morphing core resources dynamically.

At a base level, we propose an AMP architecture where each core
is resourced moderately in all areas, while featuring extra strength
in a specific area such as integer or floating-point operations. The
strength of the cores is non-overlapping. Thus, each core is suited
for specific workloads. When a thread demands strength in more
than one area, the cores are morphed dynamically by realigning
their execution resources such that one core gains strength in one
or more additional area(s) by trading its moderate resources with
stronger resources of other core(s). There are several benefits to
this approach. First, it allows applications to exploit the most
suitable core for better performance. Second, individual cores
remain modest in their sizing, therefore allowing the AMP to meet
the cost and power targets. Third, when operated in the morphed
mode, the realigned resources enable higher levels of performance
for the applications that can benefit from them. Recent studies
have shown that symmetric cores are unlikely to provide better
performance than a heterogeneous multicore [13], [18]. Further
studies [9], [16], [18], [33], [36] have shown that reconfigurable
architectures may increase the benefits of AMPs even further. This
provides a strong argument for our target multicore architecture.
In this work we use hardware performance monitors to discover

Instruction

fetch/decode ROB

Weak FPU

ISQ

Strong INT

ISQ

Weak FPU

units

Strong INT

units

 Strong Integer, Weak FP core

CDB

Instruction

fetch/decode ROB

Strong FPU

ISQ

Weak INT

ISQ

Strong FPU

units

Weak INT

units

Strong FP, Weak INT core

CDB

Core 1 - INT Core 2 - FP

Figure 1. Baseline configuration for two heterogeneous cores.

thread to core affinity during runtime. Such discovery may trigger
a thread swap or core morphing.

In the proposed scheme, the cores adapt to the time-varying
computational requirements of an application. For the purpose of
illustration, consider an AMP with two heterogeneous cores (see
Figure 1). The first core is a 2-way superscalar capable of handling
integer intensive operations, but has low performance for floating-
point operations. The second core is capable of handling floating-
point intensive operations, but has weak support for executing
integer code. This is referred to as the baseline configuration in
the paper. Core morphing in this example means that core 1 (in
Figure 1) trades its weaker floating-point unit with core 2 to gain a
stronger floating-point unit. This results in core 1 becoming strong
on every front while core 2 becomes weaker on both fronts. When
a change in the computation demands of the threads running on
the two cores is detected, the system may decide to either perform
morphing, return to the baseline configuration, or swap the two
threads running on the cores. Detection of changes in the threads’
behavior is done using hardware performance monitors that enable
dynamic profiling of the threads by collecting their characteristics
at runtime.

The overhead of the required hardware support to enable swap-
ping and core morphing at runtime is minimal, as they reuse the
existing resources for task swaps and sleep states. The resulting
performance-per-watt gain compared to the baseline heterogeneous
configuration with static scheduling is significant.

The key contributions of this paper are:
1) A novel core morphing scheme that allows the AMP to

morph at runtime. The reconfiguration allows the cores to
match their hardware computation capabilities to the require-
ments of the executing workloads.

2) A novel hardware-based runtime algorithm to concurrently
and non-invasively predict the performance per watt of ap-
plications while previously proposed dynamic schemes [30],
[37] required sampling to determine the thread to core
assignment. When the performance monitoring indicates that
reconfiguration may be beneficial, our scheme either triggers
a swap of the applications between cores, or performs a
resource morphing, or reverts to the baseline configuration.

II. RELATED WORK

Recently, reconfigurable multicores have received considerable
attention. Core fusion was presented in [8] where the cores of
a homogeneous CMP were reconfigured at runtime into stronger
cores by “fusing” resources from the available cores. Another

approach to fusion of homogeneous cores is presented in [10],
where 32 dual-issue cores could be fused into a single 64-issue
processor. Both schemes exhibit a high inter-core communication
overhead. In addition, the reconfiguration overhead of critical units
like the Reorder Buffer (ROB), issue queue and load/store queue
has adversely affected the potential benefits. The difficulty in
achieving good performance by fusing simple in-order cores into
out-of-order (OOO) cores has been discussed in [2].

Aggregating cores in an SMP [8], [10], [36] offers more of
the same resources and hence its performance benefits saturate
as the Instruction Level Parallelism (ILP) saturates. Variations in
computational demands of applications also exist. For example,
in the SPEC benchmark [7], equake is floating-point intensive
while gcc is both integer and load-store intensive. Thus, to achieve
acceptable performance for both workloads, the homogeneous
cores would have to be designed such that they have a reasonably
strong floating-point unit (FP), integer unit (INT) and load-store
queues (LSQ). When only a strong FP or strong INT performance
is needed, resources are idled.

Heterogeneous architectures have been proposed to achieve
higher performance per area and per watt [12]. In [3], Kumar et
al. show their benefits in terms of reduced power using a single
ISA heterogeneous CMP. Grochowski et al. [6] have explored
various methods of reducing power consumption and report that
heterogeneous cores are the most useful for this purpose.

In [13], Kumar et al. address the design of an AMP, targeting
area and power efficiency. They use cores that match the resource
requirements of certain types of workloads. Das et al. [21] have
proposed an asymmetric dual-core processor with one core hav-
ing strong integer instruction support while the other has strong
floating-point support. The two cores can be fused into a single
strong processor which retains the front-end of the INT core, and
takes over the floating-point units of the FP core. The front-end
of the FP core remains idle. Their scheme is thus static where
the cores are either morphed or not for the entire program run.
However, static morphing of the cores does not necessarily suit
the different phases in an application and there is a need for
an architecture that would dynamically adapt to the time-varying
behavior of the applications.

There has been a number of schemes proposed for dynamic
reconfiguration and thread migration in an AMP. In [30], Winter
et al. explore thread scheduling and global power management
techniques in AMPs. They compare different algorithms like
brute force, greedy and local search for thread scheduling. All
exmained schemes require sampling to determine the best thread-
to-core assignment. Luo et al. [34] propose a thread allocation
mechanism that dynamically determines how speculative threads
are allocated in a multiple same-ISA heterogeneous multicore to
achieve performance improvement with moderate energy increase.
In [32], Gibson et al. propose a forward flow architecture where
the execution logic can be scaled to meet the requirements of
the incoming workloads. In [9], Najaf-abadi et al. propose core
selectability where each “node” in the system consists of different
types of cores that share common resources. Depending on the
application, the respective core from the node is selected to serve
that application. Chen et al. [33] propose a flexible multicore
architecture for media processing which consists of one RISC
processor, a reconfigurable controller, DSP blocks and Intellectual

Instruction

fetch/decode ROB

Weak INT

ISQ

Strong

FPU ISQ

Weak INT

units

Strong

FPU units

CDB

Weak FP, Weak INT

Instruction

fetch/decode ROB

Strong

INT ISQ

Weak FP

ISQ

Strong

INT units

Weak FP

ALU units

CDB

Strong INT, Strong FP

Logic to

enable

morphing

Logic

for

CDB

morph enable

Morphed Strong core Weak core

Figure 2. Morphed configuration for two heterogeneous cores. The red
dotted lines/boxes indicate the connectivity for the strong morphed core
configuration and the black solid lines/boxes indicate connectivity for the
weak core.

Property blocks.

III. PROPOSED ARCHITECTURE

In this section, we describe in detail our proposed DCM scheme.
To illustrate our approach, we consider two cores per tile: a FP
core and an INT core where a multicore system may consist of
as many such tiles as deemed appropriate. The FP core features
strong floating-point execution units but low performance integer
execution units, while the INT core features exactly the opposite.
Other differences between the cores include the number of virtual
rename registers, issue queues (ISQ) and LSQ. The reasons for
the specific values of these parameters of the individual cores are
explained in Section IV. This scheme is similar to that proposed in
[21]. However, significant enhancements were made to the scheme.
Firstly, in [21], Das et al. did not explore the processor design space
as in depth as we do. In addition to the parameters considered
in [21], we performed design space exploration of the INT/FP ISQ
and the INT/FP rename registers. Secondly, they explore perfor-
mance benefits while we focus on performance/watt. Lastly, the
architecture proposed in [21] is static while ours can dynamically
reconfigure to meet changing application requirements.

In the baseline configuration (Figure 1) the cores operate inde-
pendently providing good performance whenever a parallel work-
load with appropriate resource requirements is executed. When
a higher sequential performance is needed, a dynamic morphing
of the cores takes place. In this configuration, the INT core
takes control of the strong floating-point unit of the FP core to
form a strong “Morphed core” while relinquishing control of its
own weak floating-point unit to the FP core. The FP core thus
becomes a “weak core.” Morphing results in two cores: (i) a strong
single-threaded core capable of handling both integer and floating-
point intensive applications efficiently, and (ii) a weak core which
consumes less power and does not provide high performance.
Instead of retaining the front end of the FP core as is, its resources
are appropriately sized down, as explained in Section IV, to suit the
application running on it and reduce power. The proposed dynamic
morphing of the cores is shown in Figure 2. If the morphed mode
is no longer beneficial, the system reconfigures itself back to the
baseline mode.

The behavior of many applications tends to vary with time. Some
may be floating-point intensive to start with and after a certain point
may have higher percentage of integer instructions and vice-versa.
Hence, the ability to swap threads between the two baseline cores

0%

20%

40%

60%

80%

100%

eq
ua

ke

am
m

p ar
t

sw
im

w

up
w

is
e

ap
si

ap

pl
u

bz
ip

2
gz

ip

gc
c

tw
ol

f
vp

r
m

cf

cj
pe

g
dj

pe
g

ba
si

cm
at

h
bi

tc
ou

nt

di
jk

st
ra

pa

tri
ci

a
st

rin
gs

ea
rc

bl
ow

fis
he

n
sh

a
ad

pc
m

de
c

ad
pc

m
en

c
C

R
C

32

FF
T

FF
TI

cp

u
ep

ic

fb
en

ch

fp
St

re
ss

in

tS
tre

ss

pi

to
w

er
s

w
he

ts
to

ne

Pe
rc

en
ta

ge
 o

f i
ns

tr
uc

tio
n

ty
pe

s BJ Load Store INT FP

Figure 3. Percentage distribution of the instructions for the 35 benchmarks.

could reduce the execution time significantly. Reduced execution
time would improve the performance/watt with less idling and thus
more efficient utilization of resources. Therefore, in addition to
the baseline and morphed modes of operation, we also allow the
two tightly coupled heterogeneous cores to swap their execution
contexts.

The proposed DCM scheme is a hardware-only solution that is
autonomous and isolated from the Operating System (OS) level
scheduler. We assume that only the initial scheduling is done by
the OS in the baseline configuration. From then on, the thread
to core assignment is managed autonomously by our scheme to
optimize performance/watt at fine-grain time slices. The hardware
overhead for the proposed architecture which is similar to that in
[21] can be estimated to be approximately 1%.

IV. DETERMINING THE CORE PARAMETERS

The design space for each core is extremely large including
the exact sizes of individual structures (e.g., reorder buffers and
issue queues). Our goal is to focus on a set of parameters that
have the largest impact on the integer and the floating-point
cores, and determine the size of these parameters for each core
such that acceptable performance is achieved for a wide range
of applications. If the cores are undersized, the results of core
morphing would be biased and misleading.

We used SESC as our architectural performance simulator [15],
and CACTI [23] and Wattch [22] to estimate power.

A. Benchmarks

For our experiments, we have selected 35 benchmarks (see
Table I): 13 benchmarks from the SPEC suite [7], 14 from the
embedded benchmarks in the MiBench suite [14], one benchmark
from the mediabench suite [17], and 7 additional synthetic bench-
marks. These 35 benchmarks encompass most typical workloads,
for example, scientific applications, media encoding/decoding and
security applications. The instruction type distribution of the se-
lected benchmarks is depicted in Figure 3 showing the diversity of
resource requirements of the different workloads.

B. Core sizing

To determine the architectural parameters for the cores, we
have started with a baseline configuration and then upsized the
parameter under consideration and recalculated the instructions per
cycle (IPC) metric for each core type. Based on the IPC, the most
appropriate value for each parameter was selected. The baseline
configuration along with the steps used for the parameter search
are shown in Table II.

The parameters that were varied for design space exploration
were the L1 and L2 caches, reorder buffer (ROB), load store queue

Table I
BENCHMARKS CONSIDERED

Benchmark
SPEC apsi, ammp, equake, wupwise, twolf, swim, mcf, gcc, gzip, bzip2, vpr, art, applu

MiBench cjpeg, djpeg, basicmath, bitcount, dijkstra, patricia, stringsearch, blowfish, sha, adpcm, crc32 fft, ffti
Mediabench and others epic, towers, intStress, fpStress, fbench, cpu, pi, whetstone

Table II
PARAMETER VARIATION STEPS FOR THE EXPERIMENTS

Parameter Size Variation steps
DL1 32K 4-8-16-32
IL1 32K 4-8-16-32
L2 256K 32-64-128-256

LSQ 64 (each LD/SD) 16-32-48-64
ROB 256 32-48-64-128-256

INTREG 128 32-48-64-128
FPREG 80 32-48-64-80
INTISQ 128 16-32-64-128
FPISQ 64 8-16-32-64

Table III
CORE CONFIGURATIONS AFTER THE SIZING EXPERIMENTS

Parameter FP INT HMG Weak
DL1 4K 4K 4K 1K
IL1 4K 4K 4K 1K
L2 128K 128K 128K 64K
LSQ (each LD/SD) 32 32 32 32
ROB 128 128 128 64
INTREG 48 64 56 32
FPREG 64 32 48 32
INTISQ 32 32 32 16
FPISQ 32 16 24 8

(LSQ), integer issue queue (INTISQ), floating-point issue queue
(FPISQ), floating-point registers (FPREG), and integer registers
(INTREG). For the sake of brevity only ROB sizing results are
shown in Figure 4. In the figure, each curve represents the ratio
of the performance for the core when going from a smaller to
larger ROB. For the FP core, it can be seen that there are several
benchmarks that benefit when going from ROB of size 64 to 128
(equake, swim, applu, twolf, wupwise, fft, ffti and whetstone) but
such benefit is no longer seen when increasing the ROB size to
256. Hence, the size 128 is chosen for the FP ROB. Based on
similar observations, the ROB for the INT core was also sized to
128. Similar sizing experiments were conducted for the rest of the
parameters. For a fair comparison between our dual-core AMP and
a 2-core Homogeneous (HMG) design, the area of two HMG cores
should match the sum of the areas of the FP and INT cores. Hence,
the sizes of the structures for HMG were obtained by averaging
those obtained for the INT and FP cores. As mentioned earlier,
whenever the multicore enters the Morphed mode of operation, the
FP core turns into a Weak core. Since this core is not expected

Table IV
EXECUTION UNIT SPECIFICATIONS FOR THE CORES. LATENCIES TAKEN

FROM [21] (P - PIPELINED, NP - NOT PIPELINED)

Core FP DIV FP MUL FP ALU
FP 1 unit, 12 cyc, P 1 unit, 4 cyc, P 2 units, 4 cyc, P

INT 1 unit, 120 cyc, NP 1 unit, 30 cyc, NP 1 unit, 10 cyc, NP
HMG 1 unit, 66 cyc, NP 1 unit, 17 cyc, P 2 units, 7 cyc, P

INT DIV INT MUL INT ALU
FP 1 unit, 120 cyc, NP 1 unit, 30 cyc, NP 1 unit, 2 cyc, NP

INT 1 unit, 12 cyc, P 1 unit, 3 cyc, P 2 units, 1 cyc, P
HMG 1 unit, 66 cyc, NP 1 unit, 16 cyc, P 2 units, 1 cyc, P

0

10

20

30

40

50

60

70

eq
u

a
k

e

a
m

m
p

a
rt

sw
im

w
u

p
w

is
e

a
p

si

a
p

p
lu

b
zi

p
2

g
zi

p

g
cc

tw
o

lf

v
p

r

m
cf

cj
p

eg

d
jp

eg

b
a
si

cm
a
th

b
it

co
u

n
t

d
ij

k
st

ra

p
a
tr

ic
ia

st
ri

n
g
se

…

b
lo

w
fi

s…

sh
a

a
d

p
cm

_…

a
d

p
cm

_…

C
R

C
3

2

F
F

T

F
F

T
I

cp
u

ep
ic

fb
en

ch

fp
S

tr
es

s

in
tS

tr
es

s

p
i

to
w

er
s

w
h

et
st

o
n
e

R
e
la

ti
v
e
 p

e
r
c
e
n

ta
g
e

p
e
r
fo

r
m

a
n

c
e
 g

a
in

s

FP core going from 64 to 128

FP core going from 128 to 256

INT core going from 64 to 128

INT core going from 128 to 256

Figure 4. Ratio of the IPC for the core configurations when going from
lower to higher sizes of ROB.

to provide a performance as high as the original FP core, we did
similar sizing experiments to try and downsize this core for energy
efficiency. The configuration for all core types is shown in Table III.
We did not include the final configuration of the Morphed mode as
it is nothing but a combination of the INT core with the FP units of
the FP core. The performance/watt and performance of these cores
are discussed in the next section. The specifications of the execution
units is shown in Table IV. The execution unit specification values
for the FP and INT cores were taken from [21] and the HMG
execution unit specifications were derived from those once again
by averaging.

V. PERFORMANCE/WATT AND PERFORMANCE OF THE CORE

CONFIGURATIONS

In this section we first analyze the performance/watt and perfor-
mance of each core by running one application at a time on the
various core types, i.e., FP, INT, Morphed, HMG and Weak cores.

A. Performance/Watt evaluation

We ran our 35 benchmarks on each core configuration and the
performance/watt results are plotted in Figure 5(a). We observe
that 3 benchmarks (apsi, epic, FFT) in the morphed mode show
notable gains. Out of these, apsi shows 35% improvement over
its closest competitor, the FP core. This benefit is more modest
for the benchmarks epic and FFT (10%). The reason why apsi
shows substantial benefits is related to the temporal distribution
of the instruction mix in apsi. Having considered an architecture
similar to ours, Das et al. [21] noted that whenever there is a phase
in the program where there is a considerable mix of FP and INT
instructions, the morphed core performs better than the others. They
compared applu to art and showed why even though applu and
art have the same instruction mix over a long run, it is the bursty
behavior in the instruction mix that makes the difference. Since the
morphed core can handle a mix of both FP and INT instructions, the
performance is improved and at the same time resources are better
utilized, and as a result a higher performance/watt is achieved.
Many programs exhibit phases and each core configuration might
be beneficial for different phases in the program execution. Hence,
running the benchmark statically on the same core configuration
may miss opportunities to maximize performance/watt. This is the

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

IP
C

/W
a
tt

FP core

INT core

Morphed core

Weak core

HMG core

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

IP
C

FP core

INT core

Morphed core

Weak core

HMG core

(a) IPC/Watt for all benchmarks

(b) IPC for all benchmarks

Figure 5. IPC/Watt and IPC for the 35 benchmarks considered when run on each core configuration for 10 million instructions.

reason why only 3 out of the 35 benchmarks show significant
benefits when run on morphed core statically throughout their
execution. In such cases, the power expended by the morphed
core outweighs the obtained performance benefits resulting in poor
performance/watt metric. This is evident from Figure 5 (b) where
the morphed core performs either equally well or better than the
other core configurations when only IPC is considered.

B. Performance evaluation

We also investigated the effects of our scheme on the perfor-
mance of the benchmarks. The results obtained for the IPC are
shown in Figure 5 (b). Here it can be seen that there is a bigger
group of benchmarks (applu, wupwise, apsi, basicmath, epic, FFT,
whetstone) that show benefits from morphing and even the gains
are higher (>200% for apsi). However, this performance gain may
not always result in a higher power efficiency.

C. Impact of program phases

We observed that over entire runs of 10 million instructions,
some benchmarks benefit, some don′t while some others even
lose out. Evaluation over entire runs does not take into account
the changes in program behavior that is observed in most appli-
cations [3], [28]. In order to demonstrate the effect of program
phases on performance/watt, we consider two benchmarks, epic
and FFT that show benefit from morphing. We want to investigate
the effect that instruction distribution of a benchmark may have on
performance/watt.

1) Study of epic: The benchmark epic was run for a few
billion instructions and the results are shown in Figure 6(a). The
performance/watt for each core type (FP, INT and Morphed) is

represented by the blue, orange and red curves, marked with an x, a
dot and a triangle, respectively. The distribution of instruction types
at each time instant is represented by the area in the increasingly
darker shades (light grey - INT, dark grey - FP, black - memory). It
can be seen that for the first 19 data points, the morphed core does
not outperform either the FP or the INT core. Hence, staying in
the baseline mode is advisable. However, for the data points 20 to
37, the morphed core does much better than the other cores (35%
on average when compared to the nearest competitor, the FP core).
Hence, there is a possibility of considerable performance/watt gains
to be made here by morphing. After that, going back to the baseline
mode once again proves beneficial. This shows that by monitoring
the program behavior at a more fine-grain level, there are more
opportunities for gains to be made by either morphing or coming
out of it. At the same time, even though gains are made for epic,
careful consideration must be given to the performance/watt of
the second thread running on the AMP which upon morphing
gets assigned to the weak core, potentially resulting in a drop in
performance/watt for that thread.

2) Study of FFT: FFT was also found to be one of the applica-
tions that benefit from morphing. The performance behavior when
FFT is run on each core type is shown in Figure 6(b). It can be
seen that even though over the entire run FFT shows a 10% benefit
when running on the morphed core, at no point in the plot does
the morphed core outperform the baseline cores. Initially up to data
point 22, the FP core does the best. Then, for data points 22 to 26,
the INT core exhibits a sudden increase in performance followed by
another phase where the FP core does much better than any other
core (80% better than the closest competitor). This continues until

(a) Study of epic

(b) Study of FFT

0

0.01

0.02

0.03

0.04

0.05

0.06

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

IP
C

/W
at

t

P
er

ce
n

ta
ge

 in
st

ru
ct

io
n

 d
is

tr
ib

u
ti

on

Program interval in 100K cycles

INT FP Memory FP core INT core Morphed core

0

0.02

0.04

0.06

0.08

0.1

0.12

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

IP
C

/W
at

t

P
er

ce
n

ta
ge

 in
st

ru
ct

io
n

 d
is

tr
ib

u
ti

on

Program interval in 100K cycles

INT FP Memory FP core INT core Morphed core

Figure 6. Zoomed view of variations in the performance of epic and FFT
when run on each core configuration.

data point 41. After that, the instruction distribution shows a sudden
drop in FP instructions and a surge in INT instructions. Hence, the
INT core now provides the best performance. In summary, even
though FFT can benefit from running on the morphed core for
the entire run, swapping the threads between the two cores may
provide the same or even better results. As mentioned earlier, in the
morphed mode when FFT is executed on the strong morphed core,
the second thread (executed along with FFT) is assigned to the
weaker core potentially decreasing its performance. Swapping the
threads may provide a better solution in such a case as the second
thread’s performance may not be greatly compromised. Thus, it
can be seen that depending on the time-dependent behavior of
an application, morphing or swapping may be the right choice.
The decision whether to swap or morph should be based on the
current instruction mix of the executing workloads. The details
of our dynamic decision making scheme are outlined in the next
section.

VI. DYNAMIC CORE MORPHING MECHANISM

Our DCM mechanism consists of two components: an online
monitor and a performance predictor. The online monitor continu-
ously and non-invasively profiles certain aspects of the execution
characteristics of the committed instructions. The performance
predictor collects the profiled application characteristics and, using
the most recently collected information, determines whether to
continue execution in the current configuration, or transition to
another configuration.

A. Performance prediction at fine grain time slices

Prior knowledge about the computational needs of the appli-
cations is generally unavailable. Hence, an online mechanism is

Algorithm for dynamic reconfiguration:

1. Threads T1 and T2 assigned randomly to cores

2. Do Swap if:

i. (%INTFP >= 44) and (%INTINT <= 30)

 OR

ii. (%FPINT >= 26) and (%FPFP <=13)

3. Go from baseline to morphed mode if:

i. For T1 (T2)

a. %(FP + INT) >= 50 and

b. (17<=%FP<=30) and (26<=%INT<=44)

ii. And T2 (T1)

a. IPC <= 0.4 and

b. %(FP + INT) < 60

4. Come out of morphed to baseline mode if:

i. Thread currently on morphed core shows

a. %(FP + INT) < 50

b. Use swap rules for thread to core assignment

5. End

• %INTFP – Integer instruction percentage of thread on FP core

• %INTINT - Integer instruction percentage of thread on INT core

• %FPFP – FP instruction percentage of thread on FP core

• %FPINT – FP instruction percentage of thread on INT core

Figure 7. Transition conditions for DCM scheme

needed to characterize the time-varying computational and resource
requirements of the applications. Hardware support is needed to de-
tect changes in the application’s behavior and then decide whether
to reconfigure the cores. The key program features that impact the
performance/watt are continuously monitored and then used during
dynamic core morphing. Since power is not a property that can be
extracted during runtime, we use other program attributes as proxy
for power when optimizing performance/watt. We use hardware
counters that monitor the instruction composition (floating-point
and integer) and the IPC of the thread that may be assigned to
the weak core upon morphing. The required counters are similar
to those used by Khan et al. [29] to keep track of instruction type
distributions and IPC. We next describe the process that we have
followed in order to make the morph/swap decisions based on the
instruction composition and IPC.

For our experiments, twelve benchmarks from the suite of 35
(see Section IV) were chosen such that they included those that
(i) benefit from morphing/swapping (apsi, epic, fft), and (ii) those
that did not (e.g., equake, art, applu). Threads were run for 40
million instructions on each core type, and IPC/Watt as well as the
instruction distributions were noted for fixed number of committed
instructions, referred to as window. Once this data was available
for each benchmark on all core types, two threads were chosen
from the pool and after every window, the core configuration that
yields the best IPC/watt was identified. The instruction distribution
of both the threads in each window was also noted. For example, at
the end of a window, while running a combination of apsi and fft, if
it is noticed that the performance of running apsi on the morphed
core and fft on the weak core is higher than the baseline mode,
this point is marked as a potential switch point from baseline to
morphed mode. Similarly, preferred switching points to come out
of the morphed mode and to swap threads were identified. In this
way, we found potential trigger points for morphing, swapping and
reverting to baseline mode. Averaging the values of the percentage
of FP instructions (%FP), percentage of INT instructions (%INT)
and IPC that we have observed for the 132 combinations of two
(out of the 12) threads, we set the rules for reconfiguration that are
included in the algorithm in Figure 7.

It can be seen that for morphed mode, we keep track of not
only the floating-point and integer instructions, but also their
sum. This is because performance/watt benefits were observed

for the morphed mode only when the executing thread exhibited
a reasonable mix of floating-point and integer instructions. We
found that the combined percentage of FP and INT instructions
should be higher than 50 (%FP + %INT ≥ 50). At the same
time, minimum and maximum bounds are set for the %FP and
%INT individually, such that when these bounds are violated, the
threads should continue to run on the baseline configuration. In
addition, it is also important to keep track of the IPC of the other
thread to make sure that its performance is not greatly compromised
by core morphing. We found this value to be 0.4. Moreover, we
experimentally deduced that it would benefit to assign the second
thread to the weak core only when its %FP + %INT < 60.

Similarly, a morphed to baseline mode switch takes place when
the total percentage of FP and INT instructions goes below 50
(%FP + %INT < 50). At this point, all the benefits of morphing
have diminished and it is better to operate in the baseline mode.
Swapping is beneficial if the thread currently running on the INT
core experiences a surge in FP instructions and the other thread on
the FP core experiences an increase in INT instructions. Based on
our experiments, we found the optimal values for the percentages of
floating-point and integer instructions for the two cores to achieve
higher performance/watt through swapping. As can be seen from
the swapping condition in Figure 7, our dynamic morphing scheme
benefits both the threads.

B. Accounting for program phase changes

A tentative decision based on the conditions mentioned in
Figure 7 is made at the end of every committed instructions
window. However, to avoid too frequent reconfigurations we prefer
to wait until the new execution phase of the thread has stabilized
and only then switch from one mode to another. To this end, we
base our reconfiguration decision on the most frequent tentative
decision made during the n most recent instruction windows. For
example, if for the most recent n windows, morphing was the most
frequent decision, it may be predicted that the threads have entered
a phase where morphing will yield the best results. The history
depth (indicated by n) and the size of the individual window have
to be determined experimentally. We have conducted a sensitivity
study to quantify the impact of window size and history depth
on the quality of the reconfiguration decisions. The best choice
would be the one that yields the largest weighted performance/watt
speedup over the entire program execution.

1) Determining the best window size and history depth: Various
window sizes of 250, 500, 1000 and 2000 instructions were
considered. Based on the activity within a chosen period consisting
of n windows, a reconfiguration decision is made. The history
depth n was varied from 5, 10, 20, 50, 100 and 200 in our
experiments. For example, if window size 500 is chosen with
history depth 10, the scheme will rely on the behavior of the threads
during the 500×10=5000 recently committed instructions to make
the reconfiguration decision. For each combination of window
size and history depth, about 140 multiprogrammed workloads
were run with a random combination of benchmarks from our set
of 35. All experiments were run until at least one of the cores
executed 40 million instructions. The weighted speedup in terms
of performance/watt obtained from each individual experiment was
then averaged to give a single value that represents the entire set.
For example, when running an experiment with window size 250

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

5 10 20 50 10
0

20
0 5 10 20 50 10
0

20
0 5 10 20 50 10
0

20
0 5 10 20 50 10
0

20
0

W
ei

g
h

te
d

 I
P

C
/W

a
tt

 S
p

ee
d

u
p

history depth

Window size 250 Window size 500 Window size 1000 Window size 2000

Figure 8. Performance sensitivity analysis for determining window size
and history depth.

and history depth 20, 140 results were obtained and these were
averaged to obtain the single representative value in Figure 8. From
the weighted speedup results in Figure 8, it can be seen that the best
speedup (taking into account a certain overhead for reconfiguration)
is obtained for a window size of 500 instructions and a history
depth of 5. A reconfiguration overhead of 400 cycles has been
considered in these experiments as discussed in the next section.

C. Reconfiguration Overhead

Core reconfiguration requires both the cores to stall execution.
For swapping threads between the cores we need to flush the
pipelines, exchange architecture states and warm the caches. Hence,
the performance impact due to reconfiguration should be accounted
for when calculating the weighted speed-ups. Some architectures
may be very slow at transitioning states between cores (order of
thousands of cycles) while others may have ISA support for state
swapping between cores and thus exhibit much smaller penalties
(order of hundreds of cycles). To quantify the reconfiguration
overhead, experiments were run with pseudo-random combinations
of benchmarks. The window size and the history depth were set
to 500 and 5. It was found that a change in operating mode of the
AMP happened forty times on an average in the experiments while
executing 40 million instructions. Even when the reconfiguration
overhead is as high as 10,000 cycles, the overall penalty is 400,000
cycles out of the 40 million cycle, i.e., about 1%. With dedicated
support for state swapping, far lower overheads can be expected
and we used an overhead of 400 cycles in our experiments.

VII. EVALUATION

Performance/watt of our proposed scheme is compared against
that of the homogeneous multicore and the baseline heterogeneous
multicore in this section. For the heterogeneous baseline we assume
that the best thread to core assignment is known in advance while
for the dynamic scheme, a random initial thread to core assignment
was made. The hope is that the dynamic scheme will detect the best
assignment shortly after the programs begin to run. The two threads
were run on the dual-core until completion and weighted/geometric
speedup were calculated. We first present in depth studies for a few
benchmark combinations and then present the results for a large
number of other benchmark combinations.

A. Detailed time-slice analysis of workload performance

An in-depth analysis for the two benchmark combinations,
({applu, art} and {epic, gcc}) is shown, at time slice intervals
of 10,000 cycles, in Figures 9 and 10 with respect to weighted
and geometric speedups, respectively. Note that the time scale on
the x-axis is not continuous. This was done because we wanted to
show only the interesting sections of the plot. For the combination

0.9

1.1

1.3

1.5

1.7

1.9

2.1

66
7

68
2

69
7

71
2

24
04

24
19

24
34

24
49

49
07

49
22

49
37

49
52

49
67

49
82

49
97

50
12

50
27

50
42

W
ei

gh
te

d
sp

ee
du

p

Program interval in 100K cycles

Speedup over heterogeneous baseline

Speedup over homogeneous multicore

swap

morph

baseline
baseline

morph

(a) Speedup for the combination applu, art

0

1

2

3

4

5

6

7

8

9

0 9 18 27 23
9

24
8

25
7

26
6

27
5

28
4

42
9

43
8

44
7

45
6

46
5

47
4

48
3

49
2

W
ei

gh
te

d
sp

ee
du

p

Program interval in 100K cycles

Speedup over heterogeneous baseline

Speedup over homogeneous multicore

swap
swap

swap

(b) Speedup for the combination epic, gcc

Figure 9. Weighted speedup of the dynamic scheme vs. the homogeneous
and heterogeneous baselines with respect to IPC/Watt.

0.9

1.1

1.3

1.5

1.7

1.9

66
7

68
2

69
7

71
2

24
04

24
19

24
34

24
49

49
07

49
22

49
37

49
52

49
67

49
82

49
97

50
12

50
27

50
42

G
eo

m
et

ri
c

sp
ee

du
p

Program interval in 100K cycles

Speedup over heterogeneous baseline

Speedup over homogeneous multicore

(a) Speedup for the combination applu, art

swap

morph

baseline

morph

baseline

0

1

2

3

4

5

6

0 9 18 27 23
9

24
8

25
7

26
6

27
5

28
4

42
9

43
8

44
7

45
6

46
5

47
4

48
3

49
2

G
eo

m
et

ri
c

sp
ee

d
u

p

Program interval in 100K cycles

Speedup over heterogeneous baseline

Speedup over homogeneous multicore

swap
swap swap

(b) Speedup for the combination epic, gcc

Figure 10. Geometric speedup of the dynamic scheme vs. the homoge-
neous and heterogeneous baselines with respect to IPC/Watt.

applu, art in Figure 9(a) (weighted) and Figure 10(a) (geometric),
it can be seen that there are five reconfigurations: one swap,
two morph and two back to baseline mode. Initially, up to data
point 682, the dynamic scheme performs as well as the static
heterogeneous scheme as they both have the same initial thread-
to-core assignment. However, the dynamic scheme outperforms the
homogeneous scheme in this region. This is due to the fact that
both threads show different behavior (applu is more FP intensive
and art is INT intensive in this phase) and since the AMP is better

suited to handle such workloads, there is a considerable benefit over
the homogeneous baseline. Later, after data point 682, a swap of
the threads take place and as a result, there is a jump in IPC/watt
when compared to the heterogeneous baseline, but not much of
a difference when compared to the homogeneous multicore. This
is because the homogeneous multicore is capable of handling all
types of workloads and this particular change in the phase does not
make much of a difference. The benefit over the heterogeneous
multicore can be attributed to the fact that the dynamic scheme
takes full advantage of the phase change. Then, morphing takes
place at data point 2404 at which a sudden jump in speedup is
observed for both the curves. But this jump is more pronounced
in the dynamic vs homogeneous curve. This is due to the fixed
resources present in the homogeneous dual-core. As can be seen
from the curves, even the heterogeneous baseline is better suited to
the applications running on the multicore (due to their contrasting
behavior) than the homogeneous one. Following that, the dynamic
scheme returns to the baseline mode as the instruction composition
changes and the performance/watt drops a little. It may be noticed
that the obtained geometric speedup is relatively smaller.

A similar trend in speedup is seen for the benchmark combi-
nation {epic, gcc} in Figure 9(b) (weighted) and Figure 10(b)
(geometric) where there are three swaps and at each reconfiguration
there are jumps in performance/watt speedup. epic is an application
that has overall a high percentage of both FP and INT instructions
but, as was observed in Figure 6(a), it has phases where there are
very few or no FP instructions. gcc on the other hand, does not
show any FP activity throughout. Hence, there are cases where both
the threads would benefit from being assigned to the INT core.
This conflict is resolved by the dynamic scheme by measuring
the performance gain that each thread will have (by means of
instruction composition) and assigning accordingly the thread that
is predicted to provide better performance/watt to the INT core.
It may also be noted that during the run (data points 9 to 257
for both weighted and geometric plots), the dynamic scheme does
slightly worse than the homogeneous one and only just better
than the heterogeneous scheme (about 1%). This happens as the
decisions to swap or morph are made only when both cores satisfy
the conditions defined in Figure 7. Sometimes only one core
satisfies the conditions resulting in no mode change. However, at
data point 257, both cores have complied and hence a swap is
performed and gains are observed. Notice that relatively smaller
gains are achieved here when the geometric speedup is considered.
After that, another swap happens at data point 465 and gains are
observed with respect to both types of speedup. On average, the
dynamic scheme outperforms the heterogeneous baseline and the
homogeneous multicore in the long run.

B. Overall Performance

Having discussed the in-depth behavior for two benchmark
combinations, results are now presented for 40 combinations of
benchmarks with respect to the weighted and geometric speedup
in Figures 11 and 12, respectively.

The 40 combinations were carefully chosen out of a pool of
150 randomly generated benchmarks combinations where all 35
benchmarks participated and not just the 12 that were used to
construct the algorithm in Figure 7. The selected 40 combinations
include the 10 worst results, the 10 best results and 20 that

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

fb
e
n
c
h
,

a
rt

g
c
c
,
a
m

m
p

fb
e
n
c
h
,

a
m

m
p

g
c
c
,
sw

im

fb
e
n
c
h
,

e
q
u
a
k
e

e
q
u
a
k

e
,

sw
im

b
a
si

c
m

a
th

,
sw

im

fb
e
n
c
h
,

a
m

m
p

a
rt

,
e
q

u
a
k
e

g
c
c
,
b

a
s
ic

m
a
th

a
m

m
p

,
b
a
si

c
m

a
th

fb
e
n
c
h
,

fb
e
n
c
h

fb
e
n
c
h
-b

a
si

c
m

a
th

a
rt

,
a
rt

a
rt

,
g

c
c

b
a
si

c
m

a
th

,
b

a
si

c
m

a
th

a
rt

,
a
m

m
p

a
rt

,
g

c
c

g
c
c
,
e
p
ic

ff
t,

 a
m

m
p

a
rt

,
a
p

p
lu

ff
t,

 e
q

u
a
k
e

ff
t,

fb
e
n

c
h

ff
t,

 f
ft

b
a
si

c
m

a
th

,
e
p

ic

w
u

p
w

is
e
,
a
p
si

sw
im

,
w

u
p
w

is
e

e
p
ic

,
a
rt

sw
im

,
a
p
si

e
p
ic

,
a
p

si

e
q
u
a
k

e
,

w
u
p

w
is

e

g
c
c
,
a
p
p

lu

a
p
si

,
a
p
p

lu

b
a
si

c
m

a
th

,
a
p

si

a
p
si

,
a
p
si

e
p
ic

,
a
p

p
lu

a
p
p
lu

,
a
p

si

e
q
u
a
k

e
,

e
p
ic

w
u

p
w

is
e
,
w

u
p
w

is
e

S
p

e
e
d

u
p

Weighted Geometric

Figure 11. Weighted performance/watt speedup of DCM scheme over heterogeneous baseline for different multiprogrammed workloads.

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

tw
o
lf

,
in

tS
tr

e
ss

in
tS

tr
e
ss

,
a
p
p

lu

in
ts

S
tr

e
ss

,
b
a
si

c
m

a
th

g
z
ip

,
in

ts
tr

e
ss

b
z
ip

,
sh

a

sh
a
,
a
rt

c
jp

e
g

,
sh

a

a
rt

,
a
p

p
lu

to
w

e
rs

,
a
m

m
p

g
z
ip

,
e
q
u

a
k

e

b
a
si

c
m

a
th

,
fb

e
n

c
h

g
c
c
,
g

c
c

fb
e
n
c
h
,

a
rt

b
a
si

c
m

a
th

,
e
q

u
a
k
e

a
p
p
lu

,
g
c
c

fb
e
n
c
h

,
a
p
p
lu

a
rt

,
a
p

si

b
a
si

c
m

a
th

,
w

u
p
w

is
e

sw
im

,
e
q
u

a
k

e

sw
im

,
sw

im

ff
t,

 a
m

m
p

ff
t,

 f
ft

sw
im

,
a
p
p

lu

a
m

m
p

,
sw

im

a
p
si

,
g

c
c

fb
e
n
c
h
,

e
p
ic

e
p
ic

,
e
p

ic

e
p
ic

,
a
rt

e
q
u
a
k

e
,

a
p
p
lu

b
a
si

c
m

a
th

,
e
q

u
a
k
e

e
q
u
a
k

e
,

a
p
si

a
m

m
p

,
a
p
p
lu

w
u

p
w

is
e
,
a
m

m
p

e
p
ic

,
a
m

m
p

w
u

p
w

is
e
,
b
a
si

c
m

a
th

fb
e
n
c
h
,

w
u
p

w
is

e

w
u

p
w

is
e
,
e
p
ic

S
p

e
e
d

u
p

Weighted Geometric

Figure 12. Weighted performance/watt speedup of DCM scheme over Homogeneous Multicore for different multiprogrammed workloads.

produced average (5%-30%) benefits with respect to the weighted
speedup. When comparing against the heterogeneous baseline
(Figure 11), it can be seen that there are a few combinations
(e.g., {fbench, art}, {gcc, ammp}) where the dynamic scheme does
slightly worse than the heterogeneous baseline (about 1% for both
weighted and geometric speedup). There are two possible reasons
for this: (i) the thread to core assignment is random for the dynamic
scheme and no reconfiguration takes place during the runs, (ii) the
scheme mispredicts. Case (i) happens when the two threads do not
satisfy the swap/morph conditions at the same time and hence no
change in the operating mode takes place. Case (ii) can happen
occasionally for any prediction scheme. However, the number of
combinations that benefit from the dynamic scheme is much higher
(94% for weighted and 92% for geometric) than those that do
not. The results obtained when comparing the dynamic to the
homogeneous multicore are shown in Figure 12. It can be seen that
the worst case performance/watt degradation is higher here (about
6% for both weighted and geometric metrics). The reasons for
the performance/watt loss are: (i) threads running on the multicore
have the same nature, i.e., either both are FP or INT intensive, or
(ii) mispredictions by the dynamic scheme. Case (i) is due to the
fact that for symmetric workloads that show very small program
phase changes, SMPs are expected to do better than the AMPs.
At the same time, when there are many program phase changes
when using symmetric workloads, the dynamic scheme does much
better (consider {fft, fft} which shows about 27% benefit). Case (ii)
is again expected to happen occasionally. Still, overall the dynamic
scheme does better than the homogeneous multicore for 96% (93%)
of the workloads when using the weighted (geometric) speedup

metric.

VIII. CONCLUSIONS

We have presented a novel DCM architecture for heterogeneous
multicores. We described the implementation of trigger mecha-
nisms for dynamic reconfiguration to maximize performance/watt.
The hardware overhead of the proposed technique is negligible
at less than 1% of the total area. The proposed heterogeneous
core architecture consists of tiles, where each tile features one
core with strong support for floating-point operations, and another
with strong support for integer code. Reconfiguration mechanisms
include thread swapping, and dynamic core morphing at runtime
by realigning resources of the given baseline cores to form a strong
and a weak core. Using the proposed dynamic reconfiguration
scheme, substantial performance and performance/watt gains are
achieved over purely static heterogeneous configuration or homo-
geneous cores (with capability corresponding to the average of the
heterogeneous cores). Our results show that the DCM architecture
outperforms the static heterogeneous/homogeneous architectures on
an average by 16%/43% with respect to weighted speedup and
7%/32% with respect to geometric speedup, respectively.

REFERENCES

[1] S. Ghiasi and D. Grunwald, “Aide de camp: Asymmetric dual core
design for power and energy reduction,” University of Colorado
Technical Report CU-CS-964-03, 2003.

[2] P. Salverda and C. Zilles, “Fundamental performance constraints
in horizontal fusion of in-order cores,” International Symposium
on High Performance Computer Architecture, 2008.

[3] R. Kumar, K. I. Farkas and N. P. Jouppi et al., “Single-ISA Het-
erogeneous Multi-Core Architectures: The Potential for Processor
Power Reduction,” International Symposium on Microarchitec-
ture, 2003.

[4] R. Kumar, D. M. Tullsen and P. Ranganathan et al., “Single-
ISA Heterogeneous Multi-Core Architectures for Multithreaded
Workload Performance,” International Symposium on Computer
Architecture, 2004.

[5] S. Balakrishnan, R. Rajwar and M. Upton et al., “The Impact of
Performance Asymmetry in Emerging Multicore Architectures,”
SIGARCH Computer Architecture News, 2005.

[6] E. Grochowski, R. Ronen and J. Shen et al., “Best of Both Latency
and Throughput,” International Conference on Computer Design,
2004.

[7] The Standard Performance Evaluation Corporation (Spec
CPI2000 suite). http://www.specbench.org/osg/cpu2000.

[8] E. Ipek, M. Kirman and N. Kirman et al., “Core fusion: accommo-
dating software diversity in chip multiprocessors,” International
Symposium on Computer Architecture, 2007.

[9] H. H. Najaf-abadi, N. K. Choudhary and E. Rotenberg, “Core-
Selectability in Chip Multiprocessors,” International Conference
on Parallel Architectures and Compilation Techniques, 2009.

[10] C. Kim, S. Sethumadhavan and M. S. Govindan et al., “Com-
posable Lightweight Processors,” International Symposium on
Microarchitecture, 2007.

[11] R. Kumar, N. P. Jouppi and D. M. Tullsen, “Conjoined-Core Chip
Multiprocessing,” International Symposium on Microarchitecture,
2004.

[12] T. Morad, U. C. Weiser and A. Kolodny, “ACCMP - Asymmetric
Cluster Chip Multi-Processing,” CCIT Technical Report 488,
2004.

[13] R. Kumar, D. M. Tullsen and N. P. Jouppi, “Core architecture
optimization for heterogeneous chip multiprocessors,” Interna-
tional Conference on Parallel Architectures and Compilation
Techniques, 2006.

[14] M. R. Guthaus, J. S. Ringenberg and D. Ernst et al., “MiBench:
A free, commercially representative embedded benchmark suite,”
IEEE International Workshop on Workload Characterization,
2001.

[15] J. Renau et al. SESC Simulator, January 2005.
http://sesc.sourceforge.net.

[16] M. Pericas, A. Cristal and F. J. Cazorla et al., “A Flexible Hetero-
geneous Multi-Core Architecture,” International Conference on
Parallel Architecture and Compilation Techniques, 2007.

[17] C. Lee, M. Potkonjak and W.H. Mangione-Smith, “MediaBench:
a tool for evaluating and synthesizing multimedia and communi-
cations systems,” International Symposium on Microarchitecture,
1997.

[18] M.D. Hill and M. R. Marty, “Amdahl’s Law in the Multicore
Era,” Computer, vol.41, no.7, pp.33-38, July 2008.

[19] D. Shelepov, J. C. S. Alcaide, S. Jeffery et al., “HASS: a scheduler
for heterogeneous multicore systems,” SIGOPS Operating System
Review, 2009.

[20] M. Pericas, A. Cristal and R. Gonzalez et al., “A decoupled
kilo-instruction processor,” International Symposium on High
Performance Computer Architecture, 2006.

[21] A. Das, R. Rodrigues, I. Koren and S. Kundu, “A Study on the
Performance Benefits of Core Morphing in an Asymmetric Mul-
ticore Processor,” International Conference on Computer Design,
2010.

[22] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A framework

for architectural-level power analysis and optimizations,” Interna-
tional Symposium on Computer Architecture, 2000.

[23] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated
cache timing, power and area model,” Technical report, Compaq
Western Research Laboratory, 2001.

[24] M. Suleman et al., “ACMP: Balancing Hardware Efficiency and
Programmer Efficiency,” Technical Report TR-HPS-2007-001,
2007.

[25] R. Joseph, “Exploring Salvage Techniques for Multi-core Archi-
tectures,” HPCRI-2005 Workshop, February 2006.

[26] C. H. V. Berkel, “Multi-core for Mobile Phones,” International
Conference on Design, Automation and Test in Europe, 2009.

[27] O. Khan and S. Kundu, “A self-adaptive scheduler for asymmetric
multi-cores,” Great Lakes Symposium on VLSI , 2010.

[28] T. Sherwood, S.Sair and B. Calder, “Phase tracking and predic-
tion,” Proceedings of 30th Annual International Symposium on
Computer Architecture, pp. 336- 347, 2003.

[29] O. Khan and S. Kundu, “Thread Relocation: A Runtime Archi-
tecture for Tolerating Hard Errors in Chip Multiprocessors,” IEEE
Transactions on Computers, pp. 651-665, May, 2010.

[30] J. A. Winter, D. H. Albonesi and C. A. Shoemaker, “Scalable
thread scheduling and global power management for hetero-
geneous many-core architectures,” International Conference on
Parallel Architectures and Compilation Techniques, 2010.

[31] M. A. Watkins and D. H. Albonesi, “Dynamically managed
multithreaded reconfigurable architectures for chip multiproces-
sors,” International Conference on Parallel Architectures and
Compilation Techniques, 2010.

[32] D. Gibson and D. A. Wood, “Forwardflow: a scalable core for
power-constrained CMPs,” International Symposium on Com-
puter Architecture, 2010.

[33] T. F. Chen, C. M. Hsu and S. R. Wu, “Flexible heterogeneous
multicore architectures for versatile media processing via cus-
tomized long instruction words,” IEEE Transactions on Circuits
and Systems for Video Technology, pp. 659-672, May 2005.

[34] Y. Luo, V. Packirisamy and W. C. Hsu et al., “Energy effi-
cient speculative threads: dynamic thread allocation in Same-ISA
heterogeneous multicore systems,” International Conference on
Parallel Architectures and Compilation Techniques, 2010.

[35] B. C. Lee and D. Brooks, “Efficiency Trends and Limits
from Comprehensive Microarchitectural Adaptivity,” International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XIII), 2008.

[36] D. Tarjan, M. Boyer and K. Skadron, “Federation: Repurposing
scalar cores for out-of-order instruction issue,” Design Automa-
tion Conference, pp.772-775, 2008.

[37] R. Teodorescu and J. Torrellas, “Variation-Aware Application
Scheduling and Power Management for Chip Multiprocessors,”
International Symposium on Computer Architecture, pp.363-374,
2008.

[38] Intel Corporation. From a Few Cores to Many: A Tera-scale
Computing Research Overview, Whitepaper, 2006.

