
Improving Processor Lifespan and Energy
Consumption Using DVFS Based on ILP Monitoring

Shikang Xu
Department of Electrical and

Computer Engineering
University of Massachusetts Amherst

Israel Koren
Department of Electrical and

Computer Engineering
University of Massachusetts Amherst

C. M. Krishna
Department of Electrical and

Computer Engineering
University of Massachusetts Amherst

Abstract—Cyber-physical systems have a major role to play
in improving efficiency and safety in transportation networks,
healthcare, energy generation and distribution, among other
fields. The thermal management of such systems is important
since high operating temperature dramatically reduces chip
lifetime; such reduced chip lifetime has obvious cost, reliability
and environmental implications. This paper presents a mecha-
nism for thermal management. We use dynamic voltage scaling
preferentially applied to highly parallel segments of the workload
while continuing to guarantee all hard deadlines. Experimental
results show that when the workload contains time-varying
levels of instruction-level parallelism (as is quite common), this
lightweight algorithm improves chip lifetime over previously
proposed methods. This approach is easy to implement, requires
no hardware modifications and imposes very little overhead.

Keywords—DVFS, Real-time systems, Cyber-physical systems,
Lifetime extension

I. INTRODUCTION

The trend in cyber-physical systems (CPS) is towards
running tasks on an integrated computing platform, thereby
pooling hardware resources. Processors in such a platform are
often subject to high thermal stresses due to their substantial
computational workloads and often high ambient tempera-
tures. Such stresses increase device failure rates and truncate
lifetimes (both highly nonlinearly as operating temperatures
rise). This is of especial concern in critical applications where
reliability is vital.

Dynamic voltage and frequency scaling (DVFS) has long
been used for energy saving and thermal management. The typ-
ical approach to DVFS in real-time systems has been to apply
it as uniformly as possible to the entire computational task [1],
subject to the need to guarantee meeting task deadlines. The
implicit assumption in such algorithms is that processor power
consumption is roughly constant over time. However, that is
not necessarily true as workloads often exhibit significant time-
varying levels of instruction-level parallelism (ILP) [2]. This
results in considerable variability over time in processor power
consumption. The algorithm in this paper is based on the
observation that the gains from voltage and frequency scaling
can be enhanced when taking such variability into account.
This is done by preferentially slowing down the (high-ILP)
higher-power region of the schedule, thereby gaining greater

This work was partially supported by the National Science Foundation under
grant CNS 1329831.

energy/temperature reduction (and reduced thermal damage)
for the same extent of slowdown. The ILP level can easily be
monitored using performance counters (measuring the number
of instructions retired per clock cycle) which are a part of most
modern processors, thereby making this a practical approach.
We call this workload-aware DVFS (WA-DVFS); we show that
such an approach enhances the mean chip lifetime.

We make standard assumptions regarding the computa-
tional workload. The workload is assumed to be periodic, with
the relative task deadlines equal to their respective periods.
(Integrating sporadic tasks into a periodic framework is fairly
simple.) The worst-case execution time (WCET) estimate of
each task is known; its actual execution time is never greater
than the WCET and is a random variable whose statistics can
be measured.

We further assume that there are two voltage (and corre-
sponding frequency) levels; the frequency levels are denoted
fhigh and flow, respectively. Extending the work to more than
two levels is quite simple; however, circuits’ supply voltages
keep dropping with advances in technology and so the scope
for a large number of levels is shrinking.

The rest of this paper is organized as follows. Section II
compares our approach to related prior work. Section III
presents the algorithm we use and Section IV some simula-
tion results. The paper concludes with a brief discussion in
Section V.

II. RELATED WORK

Since its introduction by Weiser et al. in [3], DVFS has
been widely studied. Pillai and Shin developed perhaps the
most widely cited DVFS algorithms for real-time systems;
this is used as a baseline in studying the performance of our
algorithm [1]. Aydin et al. developed a DVFS technique to use
average workload information to predict the early completion
of future executions and use this extra slack to further slow
down the processor while keeping the timing constraint in
view [4]. In [5], the authors designed and implemented a
DVFS algorithm aiming at reducing the power of the whole
system, not only that of the processor. This was integrated
with a dynamic slack-based scheduler for real-time system
[6], to select a feasible frequency. In [7], Bini et al. devel-
oped a framework to analyze and design real-time systems
minimizing the energy consumption with timing constraints.
This framework takes into account discrete processor speed

978–1–5090–0172–9/15/$31.00 c© 2015 IEEE

levels, scaling overhead, and the impact of I/O. Zhuo et al.
described a system level energy efficient task scheduling to
reduce both CPU power and external device power [8], [9].
Lu et al. introduced a procrastination-based DVFS to achieve
energy savings for systems with discrete frequencies [10].

Cho et al. consider computational workloads with parallel
regions, running on a multi-processor system. Using Amdahl’s
Law, they derive frequency allocations that improve both
energy consumption and performance [11].

DVFS has also been applied for thermal management of
processors. Murali et al. propose an approach to keep the
temperature below a threshold by using an offline computed
table and online frequency selection according to the table
[12]. Zhuo et al. propose a workload prediction scheme based
on which a PID DVFS controller is used to maximize the
performance without violating the thermal related reliability
constraint [8]. Lee et al. develop a temperature-aware DVFS
where the temperature is predicted using performance counters
[13].

These works either slow down the processor regardless
of the workload characteristics [1], [4], [5], [7] or use task
profiling to predict workload behavior [8], [10]. In none of
these is the parallelism of the task estimated and then used for
thermal management, as is done in this paper.

III. WORKLOAD-AWARE VOLTAGE SCALING ALGORITHM

Like all DVFS algorithms for real-time systems, we exploit
the slack that is generated when the workload utilization is less
than 1.

Slack can be classified as static or dynamic. Static slack
is known ahead of time; it is the extra time left over, even
if all tasks run to their (known) worst-case execution times
(WCETs). Dynamic slack is additional slack that is generated
whenever a task finishes early, i.e., without consuming its
WCET. Dynamic slack is known only upon task completion
and expires at the deadline of the generating task. We assume
a periodic workload; techniques exist to handle aperiodic tasks
within the framework of periodic workloads [14].

The WA-DVFS presented in this paper is designed to
make a DVFS decision every pre-defined time step (∆T a
configurable parameter). The voltage and frequency scaling
decision is based on the available slack and the parallelism of
the current workload. There will be no deadline miss using the
proposed WA-DVFS algorithm since it uses the same static and
dynamic slack policy as in [1]. Based on offline profiling, the
workload is divided into the following four parts and the slack
needed to run each individual part under lower voltage and
frequency is calculated: high-IPC portion within the average
execution time (AET), low-IPC portion within AET, high-
IPC portion in WCET beyond AET and low-IPC portion in
WCET beyond AET. At the beginning of every time step,
the current ILP level is classified as either high or low, using
the observed Instruction Per Cycle (IPC) in the previous time
step. After that, the available slack is updated (by adding the
newly generated dynamic slack and removing expired and used
slack). If the slack reserved for current parallelism (high or
low) is enough to execute the workload under lower voltage
and frequency for the coming time step without missing the
deadline, voltage and frequency scaling is applied.

The pseudo code of our algorithm is presented in Figures
1 to 5. An initialization step, to record the available static
slack, is carried out every LCM (Least Common Multiple)
of the task periods, as shown in Figure 2. The total available
static slack at the beginning is calculated based on the WCETs
(denoted by sstatic). The slack values needed to slow down
the high- and low-IPC portions of the AET (denoted by
shighAET

and slowAET
) are then calculated (lines 2 and 3).

Then, the slack needed to slow down the high-IPC part of the
WCET above the high-IPC portion of the AET (denoted by
shighWCET−AET

) is calculated in line 4. The rest of the code
consists of allocating slack to the four parts of the workload
mentioned above. Allocation stops once the slack has been
exhausted. For example, if the slack is only sufficient to slow
down the high-IPC portion of the AET, none will be left for
the other portions. Slack reserved for the high IPC portion
(shigh) will be increased by the amount of slack reserved
for the high-IPC portion of the AET. (Dynamic slack, to be
discussed below, is also assigned in the same order.) These are
initial and static allocations. Slack reserved for the high/low
IPC portion (shigh/low) will be updated dynamically as new
slack is released or the current slack expires.

After initial static slack assignment at the beginning of each
LCM of task periods, the available slack for high-/low- IPC
phase is set equal to the pre-calculated static slack (line 15).
Dynamic slack will be set to 0 since the dynamic slack expires
at the beginning of each LCM (Figure 2, lines 16 to 22). At
the beginning of every time step, the IPC value is updated with
counter values from the previous time step (except for the very
first time step since it has no previous step). The available
slacks (slow and shigh) will also be updated. To update, the
HandleNewSlack(t) and HandleExpiredSlack(t)
functions are called.

The function HandleNewSlack(t) (shown in Figure
4) assigns newly available dynamic slack from tasks which
finish early in the previous time step. The amount of slack
and its expiry time from task i will be saved in S[i].slack
and S[i].expire, respectively; the amount is the difference
between the worst-case and actual execution time. When a
deadline is reached, the slack associated with that task iteration
expires. The total amount of newly available dynamic slack is
accumulated in sdnew (Figure 4, lines 1 to 5). Assignment
of the newly available dynamic slack is carried out using the
same order as used in the static slack assignment (lines 6 to
15).

To deal with the expired slack, the function
HandleExpiredSlack(t) removes the slack in the
reverse order in which it was assigned; slack assigned to the
low-IPC portion of the WCET will be removed first. The
function UseSlack(s) (Figure 3) handles the use of the
available slack. Note that a dynamic slack is always associated
with a deadline; slack are used in an earliest-deadline first
order.

IV. EXPERIMENTAL RESULTS

A. System Configuration

We compare our algorithm to the previously developed
DVFS technique by Pillai and Shin (denoted by P-DVFS) [1]
in terms of chip lifetime. We use both synthetic and standard

Notation
fhigh: Processor high frequency level, normalized to 1
flow: Processor low frequency
pi, wei/aei: Period, WCET/actual execution time of task
i
LCM : Least common multiple of all pis
h: Execution time of high-IPC phase at fhigh
l: Execution time of low-IPC phase at fhigh
sstatic: Static slack
sdnew/sdexpired: Newly-obtained/expired dynamic slack
shighAET /lowAET /highWCET /lowWCET

: Slack needed to
slow down the 4 high/low IPC phases
shigh/slow: Current available slack for high/low IPC phase
S[i].slack, S[i].expire: Amount and expiry time of slack
for task i
∆T : time step
IPCthreshold: IPC threshold used to separate high- and
low-IPC
IPClast: IPC in the previous time step
Mh/Ml: Statistical mean execution time of high-/low-IPC
as a fraction of the low-IPC part in the worst case
f : Frequency the processor is running at
tsim: Simulation time, initialized at 0

WA-DVFS:
At every time step

1 IF tsim mod LCM =0
2 Initialize()
3 IF tsim = 0
4 f = fhigh
5 ELSE
6 set IPClast equal to the average IPC in the past time

step
7 HandleNewSlack()
8 HandleExpiredSlack(tsim)
9 IF IPClast ≥ IPCthreshold

10 IF shigh ≥ (1
flow
− 1) ∗∆T

11 f = flow
12 shigh = shigh − (1

flow
− 1) ∗∆T

13 UseSlack((1
flow
− 1) ∗∆T)

14 ELSE
15 f = fhigh
16 ELSE
17 IF slow ≥ (1

flow
− 1) ∗∆T

18 f = flow
19 slow = slow − (1

flow
− 1) ∗∆T

20 UseSlack((1
flow
− 1) ∗∆T)

21 ELSE
22 f = fhigh
23 tsim = tsim + ∆T

Fig. 1. Workload-Aware Dynamic Voltage/Frequency Scaling

benchmark (SPEC06) workloads to study the performance of
our algorithm. The synthetic workload is based on power traces
generated using the observed roughly linear dependence of
power consumption on IPC. This linear relation is obtained
using linear regression over SPEC06 benchmarks. All work-
loads contain only low and high IPC phase(s). In the low (high)
IPC phase(s) of the synthetic power traces, the IPC value has
a normal distribution around a specified low (high) mean IPC

Initialize()
1 shigh=0, slow=0
2 sstatic =

∑n
i=1 wei(

1∑n

i=1
ei/pi

− 1)

3 shighAET
= h ∗Mh ∗ (1

flow
− 1)

4 slowAET
= l ∗Ml ∗ (1

flow
− 1)

5 shighWCET−AET
= h ∗ (1−Mh) ∗ (1

flow
− 1)

6 For s in (shighAET
, slowAET

, shighWCET
, slowWCET

)
7 IF sstatic > 0
8 IF s ≤ sstatic
9 reserve s amount slack for corresponding portion

10 sstatic-=s
11 ELSE
12 reserve sstatic amount slack for corresponding por-

tion
13 sstatic = 0
14 ELSE break
15 Update shigh and slow according to above reservation
16 FOR i in 1 to n
17 S[i].slack = 0
18 S[i].expire = +∞
19 shigh = sstatichigh

20 slow = sstaticlow
21 sdynamichigh

= 0
22 sdynamiclow = 0

Fig. 2. Initialization

UseSlack(s)
1 FOR ALL tasks i in S, in S[i].expire ascending order
2 IF S[i].slack ≥ s
3 S[i].slack− = s
4 break
5 ELSE
6 s− = S[i].slack
7 S[i].slack = 0

Fig. 3. Slack Consumption

value.

The simulated system has two frequency levels, a high
frequency of 2.0 GHz and a low frequency of 1.2 GHz. (As
mentioned previously, it is fairly straightforward to extend this
work to more than two frequency levels.) The power files of the
workloads were obtained using Gem5 [15] and McPAT [16].
The power files using different DVFS algorithms are sent to
HotSpot [17] to get the temperature trace using different DVFS
algorithms. Temperature is then used to calculate the aging of
processor after running the workloads.

The Mean Time To Failure (MTTF) is a widely used metric
to express processor lifetime. The MTTF due to common
permanent failure mechanisms (e.g., electro-migration and
oxide-breakdown) under a stable temperature was studied in
[18]. To model the lifetime of a processor with time-varying
temperature, we use the thermal aging factor, γ [19]: a
processor with thermal aging factor γ1 executing for time τ
will experience the same thermal impact as the same processor
with thermal aging factor γ2 executing for time γ1

γ2
τ . When run

at a constant temperature of T , γ = 1/MTTF (T), which is
also known as the failure rate.

HandleNewSlack(t)
1 sdnew = 0
2 FOR ALL task i finishes during t−∆t
3 S[i].slack=wei − aei
4 sdnew+ = S[i].slack
5 S[i].expire=deadline of task i
6 For s in (shighAET

, slowAET
, shighWCET

, slowWCET
)

7 IF sdnew > 0
8 IF s ≤ sdnew
9 reserve s amount slack for corresponding portion

10 sdnew− = s
11 ELSE
12 reserve snew amount slack for corresponding por-

tion
13 sdnew = 0
14 ELSE break
15 Update shigh and slow according to above reservation

Fig. 4. Injecting New Slack

HandleExpiredSlack(t)
1 sdexpire = 0
2 FOR ALL S[i].expire ≤ t
3 sdexpire+ = S[i].slack
4 S[i].slack = 0
5 S[i].expire = +∞
6 For s in (sdlowWCET

, sdhighWCET
, sdlowAET

, sdhighAET
)

7 IF sdexpire > 0
8 IF s ≤ sdnew
9 sdexpire− = s

10 s=0;
11 ELSE
12 s-=sdexpire
13 sdexpire = 0
14 ELSE break
15 Update shigh and slow according to above reduction

Fig. 5. Slack Expiry

This model can be extended fairly simply to time-varying
temperatures as follows. Due to thermal inertia, it is reasonable
to assume that the temperature of a processor remains stable
over a short interval dt. Since the system workload is periodic,
the benefit of the proposed WA-DVFS over P- DVFS is

LiftimeWA−DV FS

LifetimeP−DV FS
− 1 =

∫ T0+P

T0
γP−DV FS(t)dt∫ T0+P

T0
γWA−DV FS(t)dt

− 1, where P

is the LCM of the periods of all tasks.

B. Numerical Results

The performance of the proposed algorithm running syn-
thetic workloads is shown in Figures 6 and 7. Figures
6 and 7(a, b), show the lifetime benefits of WA-DVFS
when the workload execution time is accurately estimated
(AET=WCET). Figure 6 shows the lifetime benefit of WA-
DVFS when there is only a single low IPC phase and a single
high IPC phase in the workload. Each curve in Figure 6 shows
the impact of a different length of the high IPC phase (denoted
by “H=”) as a fraction of the WCET.

Figure 6(a) shows the lifetime benefits of WA-DVFS and

P-DVFS over the situation where DVFS is not applied. Com-
pared with no DVFS, using DVFS gains a significant lifetime
improvement. The proposed WA-DVFS performs better than
P-DVFS. Figures 6 (b) and (c) show the benefit of WA-DVFS
over P-DVFS when the IPC difference between the low and
high IPC phases is large or small. In these two figures, when
the utilization is close to 1, little or no slack is available
and the two algorithms behave similarly as there is limited
opportunity for voltage scaling. At the other extreme, for low
utilizations (below 0.6 in our example), there is enough slack
to run the entire workload at the low voltage and frequency
and all scaling algorithms behave the same. Between these
two extremes, WA-DVFS outperforms P-DVFS by more than
15% when the workload contains intervals of sufficient IPC
disparity. Since WA-DVFS relies on such a disparity for its
functioning, as the disparity drops, so does the benefit of this
algorithm over P-DVFS (see Figure 6(c)).

We next consider the impact of the phase length and
the algorithm time-step, ∆T . In Figure 7(a), the benefit of
WA-DVFS over P-DVFS for four values of the phase length
(expressed as a multiple of the processor’s thermal time-
constant τthermal=25ms), is shown. Here, we assume that the
high- and low-IPC segments are of equal length and that the
task consumes its WCET. As the segment size drops below
about a quarter of the thermal time-constant, the benefit of WA-
DVFS drops as well since the processor has an opportunity to
cool down during the low-IPC segments.

For obvious reasons, the step size, ∆T , of WA-DVFS can
affect its performance; this is explored in Figure 7(b). Here the
workload has a single low IPC phase and a single high IPC
phase. Up to a step size of 50 ms, there is little degradation
in performance; beyond that, the algorithm’s performance
deteriorates markedly. This is because a large ∆T is a measure
of the granularity of the segment over which scaling is carried
out. With a large step, parallelism will be monitored less
accurately. Slack smaller than the amount needed to slow down
a step will not be wasted.

The case where execution time is not accurately estimated
is studied in Figure 7(c). In this figure, the length of the
low/high IPC phase is assumed to be 0.5 of the total expected
execution time. “L”(“H”) is the ratio of the actual length of the
low (high) IPC phase to the WCET. As before, the comparison
is against P-DVFS.

In Figure 7(c), the slacks are assigned according to the
expected length of each phase. WA-DVFS behaves slightly
worse than P-DVFS for a certain utilization range, especially
when the actual high IPC phase is short. This is because
the proposed algorithm assigns slack according to its prior
(inaccurate) information and assigns more slack to the high
IPC phase than needed. Since the actual high IPC phase is
shorter than expected, the high-IPC phase does not use all its
assigned slack which is then wasted.

Next, we study the performance of WA-DVFS on real
(not synthetic) benchmarks. The high and low IPC phases
are provided by the hmmer and mcf SPEC06 benchmarks,
respectively. Figure 8 (a) compares the performance of WA-
DVFS and P-DVFS to no DVFS . The workload used contains
a single low IPC phase and a single high IPC phase and the
workload execution time is accurately estimated. The results in

 0

 0.2

 0.4

 0.6

 0.8

 0.6 0.7 0.8 0.9 1

L
if
e

ti
m

e
 B

e
n

e
fi
t

Utilization

WA-DVFS H=0.25

WA-DVFS H=0.5

WA-DVFS H=0.75

P-DVFS H=0.25

P-DVFS H=0.5

P-DVFS H=0.75

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.6 0.7 0.8 0.9 1

L
if
e

ti
m

e
 B

e
n

e
fi
t

Utilization

H=0.25

H=0.5

H=0.75

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.6 0.7 0.8 0.9 1

L
if
e

ti
m

e
 B

e
n

e
fi
t

Utilization

H=0.25

H=0.5

H=0.75

(c)

Fig. 6. Lifetime benefit of WA-DVFS over P-DVFS assuming an accurate execution time estimation: (a)Benefit of WA-DVFS and P-DVFS over no DVFS
assuming an accurate execution time estimation (b) Large IPC difference (0.2 vs 2.2), (c) Small IPC difference (1.2 vs 2.2)

 0

 0.05

 0.1

 0.15

 0.2

 0.6 0.7 0.8 0.9 1

L
if
e

ti
m

e
 B

e
n

e
fi
t

Utilization

>> τthermal
τthermal

0.25*τthermal
0.05*τthermal

(a)

-0.02

 0.02

 0.06

 0.1

 0.14

 0.18

 0.6 0.7 0.8 0.9 1

L
if
e

ti
m

e
 B

e
n

e
fi
t

Utilization

∆T=5ms

∆T=50ms

∆T=100ms

(b)

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.6 0.7 0.8 0.9 1

L
if
e
ti
m

e
 B

e
n
e
fi
t

Utilization

L=0.15,H=0.15
L=0.15,H=0.35
L=0.25,H=0.25
L=0.35,H=0.15
L=0.35,H=0.35

(c)

Fig. 7. (a)Benefit of WA-DVFS over P-DVFS for different phase lengths (b) Benefit of WA-DVFS over P-DVFS for different time steps (c) Benefit of WA-DVFS
over P-DVFS for an inaccurate execution time estimation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.7 0.8 0.9 1

L
if
e

ti
m

e
 B

e
n

e
fi
t

Utilization

WA-DVFS H=0.25

WA-DVFS H=0.5

WA-DVFS H=0.75

P-DVFS H=0.25

P-DVFS H=0.5

P-DVFS H=0.75

(a)

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.6 0.7 0.8 0.9 1

L
if
e

ti
m

e
 B

e
n

e
fi
t

Utilization

L=0.15,H=0.15
L=0.15,H=0.35
L=0.25,H=0.25
L=0.35,H=0.15
L=0.35,H=0.35

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.6 0.7 0.8 0.9 1

E
n
e
rg

y
 B

e
n
e
fi
t
W

.R
.T

.
P

-D
V

F
S

Utilization

H=0.25
H=0.4
H=0.5
H=0.6

H=0.75

(c)

Fig. 8. (a) Benefit of WA-DVFS and P-DVFS over no DVFS using an actual benchmark workload assuming an accurate execution time estimation (b) Benefit of
WA-DVFS over P-DVFS using an actual benchmark workload assuming an inaccurate execution time estimation (c) Energy saving of WA-DVFS over P-DVFS
using an actual benchmark workload and assuming an accurate execution time estimation

these two figures are consistent with the results shown earlier
in Figure 6(a).

Figure 8(b) compares the performance of WA-DVFS and
P-DVFS when the actual execution is lower than the WCET.
The result is similar to that in Figure 7(c). When the actual
length of the high IPC phase is smaller than the length of
the low IPC phase, WA-DVFS performs marginally worse
than P-DVFS for some utilizations. This result indicates that
the profiling of workload can be used to decide when to
use WA-DVFS and when to use P-DVFS. When the actual
ratio length of low IPC/length of high IPC is larger

than estimated and the utilization is small, P-DVFS is the
better choice. Furthermore, as seen in Figure 8(c), WA-
DVFS offers some energy savings over P-DVFS (calculated

as 1− Energy WA−DV FS

Energy P−DV FS
).

Figure 9 shows the temperature variation when using WA-
DVFS and P-DVFS for a given utilization. This variation is
expressed as the standard deviation of temperature of indi-
vidual functional blocks within the processor. As expected,
WA-DVFS has a lower temperature variation than P-DVFS.

 0

 4

 8

 12

U=0.89(WA-DVFS)

U=0.89(P-DVFS)

U=0.75(WA-DVFS)

U=0.75(P-DVFS)

U=0.625(WA-DVFS)

U=0.625(P-DVFS)

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
T

e
m

p
e
ra

tu
re Dcache

Bpred
IntReg
LdSTQ
FPReg

Fig. 9. Temperature variations when Using WA-DVFS and P-DVFS

V. CONCLUSION

In this paper, a workload-aware DVFS algorithm is pro-
posed to extend the lifetime of processors in CPS and real-
time systems where deadline constraints must be met. This
algorithm is motivated by the fact that the actual parallelism
of computational workloads can vary widely with time. The
realized parallelism in the execution is limited by both the
inherent logical parallelism (or sequentiality) of the code and
the ability of the hardware platform to support superscalar
execution. Modern superscalar processors which are capable
of supporting a high degree of instruction-level parallelism
are increasingly being used in high-end CPS applications. The
natural variability that exists within the logical parallelism of
the code gives us an opportunity to preferentially apply the
available slack to slow down the more energy-dense highly-
parallel part of the execution, thereby achieving higher energy
savings and reducing thermal stress over a traditional real-time
DVFS approach.

This algorithm is lightweight; modern processors provide
the facility to easily estimate current levels of instruction-level
parallelism. Such an approach is most useful in conditions
where the utilization is moderate, when the variation in the
execution time of individual tasks is not large, and when the
contiguous phases of high and low parallelism are longer than
the thermal time constant of the processor. This algorithm can
be applied instead of the standard DVFS algorithm when such
conditions are satisfied. In such cases, our results indicate
that this algorithm achieves better than 15% extension in
the mean lifetime. We have also studied the case where the
estimated execution time is different from actual one. The
proposed algorithm still gains more than a 10% benefit at some
utilizations.

Extensions to this algorithm, currently under development,
include task allocation to multicore platforms to maximize the
benefit from WA-DVFS, and using learning-based methods to
augment a priori information about the workload and thereby
enhancing the performance of this algorithm.

REFERENCES

[1] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” SIGOPS Oper. Syst. Rev., vol. 35,
no. 5, pp. 89–102, Oct. 2001.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth
Edition: A Quantitative Approach, 5th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2011.

[3] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced cpu energy,” in Proceedings of the 1st USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI ’94.
Berkeley, CA, USA: USENIX Association, 1994. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267638.1267640

[4] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez, “Power-aware
scheduling for periodic real-time tasks,” IEEE Trans. Comput., vol. 53,
no. 5, pp. 584–600, May 2004.

[5] M. Lawitzky, D. Snowdon, and P. Stefan, “Integrating real time and
power management in a real system,” in Proceeding of the 4th Workshop
on Operating System Platforms for Embedded Real-Time Application,
Jul 2008.

[6] S. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dynamic inte-
grated scheduling of hard real-time, soft real-time, and non-real-time
processes,” in Real-Time Systems Symposium, 2003. RTSS 2003. 24th
IEEE, Dec 2003, pp. 396–407.

[7] E. Bini, G. Buttazzo, and G. Lipari, “Minimizing cpu energy in real-
time systems with discrete speed management,” ACM Trans. Embed.
Comput. Syst., vol. 8, no. 4, pp. 31:1–31:23, Jul. 2009.

[8] J. Zhuo and C. Chakrabarti, “System-level energy-efficient dynamic
task scheduling,” in Design Automation Conference, 2005. Proceedings.
42nd, June 2005, pp. 628–631.

[9] ——, “Energy-efficient dynamic task scheduling algorithms for dvs
systems,” ACM Trans. Embed. Comput. Syst., vol. 7, no. 2, pp. 17:1–
17:25, Jan. 2008.

[10] Z. Lu, Y. Zhang, M. Stan, J. Lach, and K. Skadron, “Procrastinating
voltage scheduling with discrete frequency sets,” in Design, Automation
and Test in Europe, 2006. DATE ’06. Proceedings, vol. 1, March 2006,
p. 6.

[11] S. Cho and R. Melhem, “Corollaries to amdahl’s law for energy,”
Computer Architecture Letters, vol. 7, no. 1, pp. 25–28, Jan 2008.

[12] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, L. Benini, and
G. De Micheli, “Temperature control of high-performance multi-core
platforms using convex optimization,” in Proceedings of the Conference
on Design, Automation and Test in Europe, ser. DATE ’08. New
York, NY, USA: ACM, 2008, pp. 110–115. [Online]. Available:
http://doi.acm.org/10.1145/1403375.1403405

[13] J. S. Lee, K. Skadron, and S. W. Chung, “Predictive temperature-aware
dvfs,” Computers, IEEE Transactions on, vol. 59, no. 1, pp. 127–133,
Jan 2010.

[14] J. W. S. W. Liu, Real-Time Systems, 1st ed. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2000.

[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718

[16] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“Mcpat: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on, Dec
2009, pp. 469–480.

[17] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. Stan, “Hotspot: a compact thermal modeling methodology for
early-stage vlsi design,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 14, no. 5, pp. 501–513, May 2006.

[18] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “Lifetime reliability:
toward an architectural solution,” Micro, IEEE, vol. 25, no. 3, pp. 70–
80, 2005.

[19] C. Krishna, “Ameliorating thermally accelerated aging with state-based
application of fault-tolerance in cyber-physical computers,” Reliability,
IEEE Transactions on, vol. 64, no. 1, pp. 4–14, March 2015.

