The optimal controller for a system with stochastic inputs is designed to minimize the expected cost function. The system under consideration is given by the following differential equation:

\[\dot{x}(t) = A(t)x(t) + B(t)u(t) + C(t)w(t) \]

where \(x(t) \) is the state vector, \(u(t) \) is the control input, \(w(t) \) is the stochastic input, \(A(t) \), \(B(t) \), and \(C(t) \) are time-varying matrices.

The cost function to be minimized is given by:

\[J = \mathbb{E} \left[\int_0^T (x^T(t)Q(t)x(t) + u^2(t)R(t)) dt \right] \]

where \(Q(t) \) and \(R(t) \) are positive definite matrices.

The solution to the optimal control problem is obtained by solving the Hamilton-Jacobi equation:

\[\frac{\partial J}{\partial x} + A^T(t)Q(t)x + B^T(t)R(t)u = 0 \]

The optimal control law is then given by:

\[u(t) = -R(t)^{-1}B(t)^T \frac{\partial J}{\partial x} \]

This approach provides a systematic method for designing controllers that minimize the expected cost function.
The National Conversion of Electrical & Electronic Engineers in Israel

\[(1) \quad x(t) = \phi(t) u(t) \]

\[(2) \quad z(t) = N(t)x(t) + k(t) \]

Equations (1), (5) and (6) are combined to an augmented system equation:

RESULTS

\[\text{This model has two main characteristics:} \]

\[\text{First - the filter part and the gain part of the control controller,} \]

\[\text{Second - we can easily design the controller.} \]

\[\text{Assume the following form of the controller:} \]

\[\text{where } \mathbf{z}(t) \text{ is the least-square estimate of } x(t) \]

\[\text{This problem has also a well-known solution using Kalman optimal filter:} \]

\[\{ \phi(t) \theta(t) \}^T = \mathbf{c} \]

\[\text{where } \mathbf{c} \text{ and } \theta(t) \text{ are the initial state and initial state estimate, respectively.} \]

\[\text{The choice of the filter } \mathbf{F}(t) \text{ is the optimal filter in the case of a colored measurement noise:} \]

\[\text{where } k(t) \text{ is the least-square estimate of } x(t) \]

\[\text{The proposed solution is to use the accurate model of the system, then find the controller of the dynamic.} \]

\[\text{This model has two main characteristics:} \]

\[\text{First - the filter part and the gain part of the control controller,} \]

\[\text{Second - we can easily design the controller.} \]

\[\text{Assume the following form of the controller:} \]

\[\text{where } \mathbf{z}(t) \text{ is the least-square estimate of } x(t) \]

\[\text{This problem has also a well-known solution using Kalman optimal filter:} \]

\[\{ \phi(t) \theta(t) \}^T = \mathbf{c} \]

\[\text{where } \mathbf{c} \text{ and } \theta(t) \text{ are the initial state and initial state estimate, respectively.} \]
The 7th National Conference of Electrical & Electronic Engineers in Israel

The solution of the following equation:

\[y(t) = (e(t) - \sum_{j=1}^{n} a_j x(t-j)) e(t) \]

satisfies the following equation:

\[y(t) = y(t-1) + y(t-2) + \ldots + y(t-\tau) \]

In order to solve the optimal control problem, it is worthwhile to transform the stochastic system to the following form:

\[\begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} = \begin{bmatrix} A_1 & A_2 & \cdots & A_n \end{bmatrix} \begin{bmatrix} x(t) \\ \vdots \\ x(t-n+1) \end{bmatrix} + \begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix} u(t) \]

The matrix \(w(t) \) can be decomposed in the following way:

\[\begin{bmatrix} w(t) \\ \vdots \\ w(t-n+1) \end{bmatrix} = \begin{bmatrix} A_1 & A_2 & \cdots & A_n \end{bmatrix} \begin{bmatrix} x(t) \\ \vdots \\ x(t-n+1) \end{bmatrix} + \begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix} u(t) \]

where

\[A = \begin{bmatrix} A_1 \\ \vdots \\ A_n \end{bmatrix}, \quad B = \begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix} \]
The 7th National Convention of Electrical & Electronic Engineers in Israel

suggested to the solution of the whole problem, and a digital computer program was developed. The solution, because of the problem involving a matrix and a system of linear equations, is not always exact and may be approximated by a numerical approach. The numerical method is based on the idea of approximating the solution by a sequence of linear equations, which are solved iteratively. The method is iterative, and the solution is improved by solving a sequence of linear equations. The solution is obtained by using the method of least squares, which minimizes the sum of the squares of the residuals.

\[
\begin{align*}
\mathbf{Z} & = \begin{bmatrix} \mathbf{L} & \mathbf{I} \end{bmatrix} = \begin{bmatrix} \mathbf{u} & \mathbf{c} \end{bmatrix} \mathbf{X} = \mathbf{X} \\
\mathbf{Z}_0 & = \mathbf{d} \\
\mathbf{Z}_1 & = \mathbf{u} \\
\mathbf{Z}_2 & = \mathbf{d} \\
\mathbf{Z}_3 & = \mathbf{u}
\end{align*}
\]

Hence

\[
\begin{align*}
\mathbf{Z}_0 & = \mathbf{d} \\
\mathbf{Z}_1 & = \mathbf{u} \\
\mathbf{Z}_2 & = \mathbf{d} \\
\mathbf{Z}_3 & = \mathbf{u}
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix} \mathbf{Z}_0 & \mathbf{d} \mathbf{u} & \mathbf{Z}_1 & \mathbf{d} \mathbf{u} \\
\mathbf{X} & \mathbf{d} & \mathbf{c} \end{bmatrix} & = \begin{bmatrix} \mathbf{Z}_0 & \mathbf{d} \mathbf{u} & \mathbf{Z}_1 & \mathbf{d} \mathbf{u} \\
\end{bmatrix} = \mathbf{T}
\end{align*}
\]

Hence:

\[
\begin{align*}
\mathbf{Z}_0 & = \mathbf{d} \\
\mathbf{Z}_1 & = \mathbf{u} \\
\mathbf{Z}_2 & = \mathbf{d} \\
\mathbf{Z}_3 & = \mathbf{u}
\end{align*}
\]

This defines the optimal matrix \(\mathbf{T} \). In order to determine the matrices \(\mathbf{P} \) and \(\mathbf{K} \), we decom-

\[
\begin{align*}
\mathbf{Z}_0 & = \mathbf{d} \mathbf{u} \\
\mathbf{Z}_1 & = \mathbf{d} \mathbf{u} \\
\mathbf{Z}_2 & = \mathbf{d} \mathbf{u} \\
\mathbf{Z}_3 & = \mathbf{d} \mathbf{u}
\end{align*}
\]

where \(\mathbf{P} \) is a non-negative definite matrix satisfying the following matrix equation:

\[
\begin{align*}
\mathbf{P} & = \mathbf{Z}_0 \mathbf{d} \mathbf{u} \\
\mathbf{P} & = \mathbf{Z}_1 \mathbf{d} \mathbf{u} \\
\mathbf{P} & = \mathbf{Z}_2 \mathbf{d} \mathbf{u} \\
\mathbf{P} & = \mathbf{Z}_3 \mathbf{d} \mathbf{u}
\end{align*}
\]

Applying the algorithm of matrix multiplication and the least squares method, one can obtain the optimal solution. The solution can be expressed in the form:

\[
\begin{align*}
\mathbf{X} & = \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 \end{bmatrix} \\
\mathbf{Z}_0 \mathbf{d} & = \mathbf{X}_1 \\
\mathbf{Z}_1 \mathbf{d} & = \mathbf{X}_1 \\
\mathbf{Z}_2 \mathbf{d} & = \mathbf{X}_1 \\
\mathbf{Z}_3 \mathbf{d} & = \mathbf{X}_1
\end{align*}
\]

Similar expressions are obtained for the measurement noise, where it can easily be proved that

\[
\begin{align*}
\begin{bmatrix} \mathbf{X}_0 & \mathbf{X}_1 \end{bmatrix} & = \mathbf{X}_0 \\
\mathbf{X}_1 & = \mathbf{X}_0 \\
\mathbf{X}_2 & = \mathbf{X}_0
\end{align*}
\]

where

\[
\begin{align*}
\mathbf{X}_0 & = \begin{bmatrix} \mathbf{X}_0 & \mathbf{X}_1 \end{bmatrix} \\
\mathbf{X}_1 & = \begin{bmatrix} \mathbf{X}_0 & \mathbf{X}_1 \end{bmatrix} \\
\mathbf{X}_2 & = \begin{bmatrix} \mathbf{X}_0 & \mathbf{X}_1 \end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\mathbf{X}_0 & = \begin{bmatrix} \mathbf{X}_0 & \mathbf{X}_1 \end{bmatrix} \\
\mathbf{X}_1 & = \begin{bmatrix} \mathbf{X}_0 & \mathbf{X}_1 \end{bmatrix} \\
\mathbf{X}_2 & = \begin{bmatrix} \mathbf{X}_0 & \mathbf{X}_1 \end{bmatrix}
\end{align*}
\]

where \(\mathbf{A} \) is the covariance matrix of \(\mathbf{X} \). In this case the cost function has the form:

\[
\begin{align*}
\mathbf{C} & = \begin{bmatrix} \mathbf{C}_0 & \mathbf{C}_1 \\
\mathbf{C}_1 & \mathbf{C}_2 \\
\end{bmatrix} \\
\mathbf{C}_0 & = \begin{bmatrix} \mathbf{C}_0 & \mathbf{C}_1 \\
\mathbf{C}_1 & \mathbf{C}_2 \\
\end{bmatrix} \\
\mathbf{C}_2 & = \begin{bmatrix} \mathbf{C}_0 & \mathbf{C}_1 \\
\mathbf{C}_1 & \mathbf{C}_2 \\
\end{bmatrix}
\end{align*}
\]
It computes the matrices P, K, and H of the optimal steady-state controller and the cor-

The program was written in Fortran IV language and later the conference student ent-

p-