Data Replication for Fault Tolerance

- Identical copies of data held at multiple nodes in a distributed system
- Improved performance and fault-tolerance
- Data replicates must be kept consistent despite failures in the system
- **Example** - five copies in five nodes:
 - If A is disconnected and a write updates the copy in A - the rest no longer consistent with A
 - Any read of their data will result in stale data
 - How many copies should we read (write)?
Simple Voting Scheme - Non Hierarchical

♦ Assign v_i votes to copy i of the data
♦ S - set of all nodes with copies of the data
♦ V - sum of all votes - $V = \sum_{i \in S} V_i$
♦ r, w - variables such that $r + w > V ; w > V/2$
♦ $V(X)$ - total number of votes assigned to copies in set X - $V(X) = \sum_{i \in X} V_i$

♦ Strategy ensuring that all reads use the latest data
♦ To complete a read - read nodes of a set $R \subseteq S$ such that $V(R) \geq r$
♦ To complete a write - write on every node of a set $W \subseteq S$ such that $V(W) \geq w$

Procedure Justification

♦ A set R such that $V(R) \geq r$ is called a read quorum
♦ A set W such that $V(W) \geq w$ is called a write quorum
♦ For any sets R and W such that $V(R) \geq r$ and $V(W) \geq w$ and $R \cap W \neq \emptyset$ (since $r + w > V$)
♦ Any read operation is guaranteed to read the value of at least one copy which has been updated by the latest write
♦ Furthermore - for any two sets W_1, W_2 such that $V(W_1), V(W_2) \geq w$
 $W_1 \cap W_2 \neq \emptyset$
Example

♦ One vote to each node
♦ The sum of all votes - \(V = 5 \)
♦ \(w > \frac{5}{2} \); \(r > 5 - w \)
♦ Permissible combinations for \((r,w)\)
 (1, 5), (2,5), (3,5), (4, 5), (5,5),
 (2, 4), (3,4), (4,4), (5,4), (3,3)

Example - Cont.

♦ Consider \((r,w) = (1, 5)\) - a read is possible from any one of the five copies; a write must update every one of the five copies
♦ Every read operation gets the most up-to-date data
♦ If \(w=5 \), selecting \(r>1 \) slows down the
♦ If node A gets disconnected - we can still read from each node but not update all nodes
♦ Consider \((r,w) = (3,3)\) - less copies to write (only 3), but read takes longer than if \((r,w) = (1, 5)\)
♦ If node A gets disconnected - read or write into A is impossible, but the remaining four nodes can continue to read and write as usual
Performance vs. Availability

♦ Selected values of r and w affect the system performance and availability

♦ If there are many more reads than writes - we choose a low r to speed up the read operations

♦ $r=1$ requires $w=5$ - write can not be done if even one node is disconnected

♦ Selecting $r=2$ allows $w=4$ and write can still be done if four out of the five nodes are connected

♦ Trade-off between performance and availability

Reliability and Availability

Markov Models

♦ Assumptions:
 * Failures occur at each node according to a Poisson process with rate λ (links do not fail)
 * When a node fails, it is repaired and up-to-date data is loaded
 * Repair time is an exponentially distributed random variable with mean $1/\mu$

♦ Example: $(r,w) = (3,3)$ - both read and write operations can take place if at least three of the five nodes are up

♦ To compute reliability and availability, we use Markov Chain models
Reliability and Long-Term Availability for \((r,w)=(3,3)\)

- **Markov chain for reliability:**
 - **State** - number of nodes down;
 - **F** - the failure state
 - **Reliability at time** \(t\)
 \[R(t) = 1 - P_F(t) \]

- **Markov chain for availability:**
 - **State** - number of nodes down
 - **Long-Term Availability** = \(P_0 + P_1 + P_2\)
 - **Complete analysis in Exercises**

Vote Assignment for Maximizing Availability

- In general, nodes have different reliabilities and availabilities
- Links can fail as well
- **Point Availability** - the probability that at time \(t\) the system is up - read and write quorums exist
- **Problem**: Assigning votes to nodes to maximize point availability
- **Optimal assignment difficult** - heuristics necessary
- **Notations**: For some fixed point in time \(t\) (\(t\) is omitted for simplicity)
 - **Point Availability of node** \(i\) - \(an(i)\)
 - **Point Availability of link** \(j\) - \(al(j)\)
 - **L(i)** - set of links incident on node \(i\)
Heuristics for Vote Assignment

♦ Heuristic 1: set \(V(i) = an(i) \sum_{j \in L(i)} al(j) \) (rounded to the nearest integer)
If sum of votes is even, give an extra vote to one of the nodes with the maximum number of votes

♦ Heuristic 2:
\(k(i, j) \) - node connected to node \(i \) by link \(j \);
set \(V(i) = an(i) + \sum_{j \in L(i)} al(j) \cdot an(k(i, j)) \) (rounded to the nearest integer)
If sum is even - an extra vote is added as above

Heuristic 1 - Example
\(v(A) = \text{round}(0.7 \times 0.7) = 0 \)
\(v(B) = \text{round}(0.8 \times 1.8) = 1 \)
\(v(C) = \text{round}(0.9 \times 1.6) = 1 \)
\(v(D) = \text{round}(0.7 \times 0.9) = 1 \)

♦ Node \(A \) is unreliable compared to the rest - gets no votes
♦ Sum of votes is 3 - quorums must satisfy \(r + w > 3 \); \(w > 3/2 \) \(\Rightarrow \) \(w = 2 \) or 3
♦ If \(w=2 \) - \(r=2 \) is smallest read quorum
♦ Possible read (or write) quorums - \(BC, CD, BD \)
♦ If \(w=3 \) - \(r=1 \) is smallest read quorum
♦ Possible read quorums - \(B, C, D \)
♦ One write quorum: \(BCD \)
Heuristic 2 - Example

- Sum of votes even - B gets an extra vote
- Final vote assignment - v(A)=1, v(B)=3, v(C)=2, v(D)=1
- Sum of votes is 7 - read and write quorums must satisfy:
 - r + w > 7
 - w > 7/2
 - w = 4 or 5 or 6 or 7

Quorums for Heuristic 2

- Possible quorums for r+w=8
 - v(A)=1, v(B)=3, v(C)=2, v(D)=1

<table>
<thead>
<tr>
<th>r</th>
<th>w</th>
<th>Read Quorums</th>
<th>Write Quorums</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>AB, BC, BD, ACD</td>
<td>AB, BC, BD, ACD</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>B, AC, CD</td>
<td>BC, ABD</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>B, C, AD</td>
<td>ABC, BCD</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>A, B, C, D</td>
<td>ABCD</td>
</tr>
</tbody>
</table>

- Every (r,w) pair has an availability associated with it - the probability that at least one read and one write quorum exist despite node and/or link failures
- (r,w)=(4,4) - identical lists of read and write quorums
- Other (r,w) - lists are different
Calculating Availability for \((r,w)=(4,4)\)

- **Availability** \(A\) is the probability that at least one of the quorums \(AB, BC, BD, ACD\) can be used.
- Denote events: \(E_1, E_2, E_3, E_4\) - \(AB, BC, BD, ACD\) are up, respectively.
- Events are not mutually exclusive.
- \(A = P(E_1 \cup E_2 \cup E_3 \cup E_4)\)

Some calculations:
- \(P(E_1) = P(AB\text{ is up}) = 0.7 \times 0.7 \times 0.8 = 0.392\)
- \(P(E_2 \cap E_3) = P(BC\text{ and BD are up}) = 0.8 \times 0.9 \times 0.9 \times 0.2 \times 0.7 = 0.091\)

Exercise: Complete the calculation of the availability \(A\) for \((r,w)=(4,4)\)

Different Method for Availability Calculation

- System has 8 modules (4 nodes and 4 links) - each can be up or down.
- Total of \(2^8 = 256\) mutually exclusive states.
- Probability of each state is a product of 8 terms, either \(a(i)\) or \(1-a(i)\) or \(a(l)\) or \(1-a(l)\).
- Methodical (but long) way of computing availability - list all states and add up the probabilities of those where a quorum exists.
- For any other value of \((r,w)\) - read and write quorums are different.
- Availability - sum of probabilities of states in which both read and write quorums exist.
Dynamic Vote Assignment

- If repair is not fast enough - system can degrade
- If system degrades enough - no connected cluster with a majority of total votes exists

Solution - adjustable quorums instead of static ones
Assumption - each node has exactly one vote

For each data, version numbers are maintained - incremented with every update

This can only be executed if a write quorum can be gathered

Dynamic Vote Assignment - Notations

- \(VN_i \) - version number of data at node \(i \)
- \(SC_i \) - update sites cardinality at node \(i \) - number of nodes which participated in the \(VN_i \)-th update of this data

When system starts operation, \(SC_i \) is initialized to the total number of nodes in the system

- \(S_i \) - set of nodes with which node \(i \) can communicate
- \(M \) - maximum version number in \(S_i \)
- \(I \) - partial set of \(S_i \) with nodes whose version number is \(M \)
- \(N \) - maximum update sites cardinality (\(S_i \)) of nodes in \(I \)
Dynamic Vote Assignment Algorithm

1. If an update request arrives at node i, node i computes the following quantities:
 • $M = \max\{VN_j, j \in S_i\}$ where S_i is the set of nodes with which node i can communicate, including itself, i.e., the maximum version number of the concerned datum, among all the nodes with which node i can communicate.
 • $I = \{j | VN_j = M, j \in S_i\}$, i.e., the set of all nodes whose version number is equal to the maximum.
 • $N = \max\{SC_j, j \in I\}$, i.e., the maximum update sites cardinality associated with all the nodes in I.

2. If $||I|| > N/2$, then node i can raise a write quorum and is allowed to carry out the update on all nodes in I; otherwise the update is not allowed. The update is carried out and the version number of each copy of that datum in I is incremented, i.e., VN_i is incremented for each $i \in I$. Also, for each $i \in I$, we set $SC_i = ||I||$. This entire step must be done atomically: all these operations must be done at each node in I, or none of them can be done.

Dynamic Vote Assignment - Example

♦ Seven nodes - same data - state at time t_0

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>VN</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>SC</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

♦ Failure disconnects into two - {A,B,C,D} and {E,F,G}

♦ E receives an update request
 * $SC_E = 7$ - E must find more than 7/2 nodes (including itself)
 * can find only 3
 * update request is rejected

♦ A receives an update request
 * can be accepted
 * A,B,C,D are updated

♦ New state

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>VN</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>SC</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
Example – Cont.

♦ Another failure - components become {A,B,C}, {D}, {E,F,G}
♦ An update request arrives at C
 * write quorum at C is 3
 * update successful
♦ New state

\[
\begin{array}{ccccccc}
A & B & C & D & E & F & G \\
VN & 7 & 7 & 7 & 6 & 5 & 5 & 5 \\
SC & 3 & 3 & 3 & 4 & 7 & 7 & 7 \\
\end{array}
\]

Voting – Hierarchical Organization

♦ If V is large, \(r+w \) is large - data operations take a long time
♦ Possible solution - hierarchical voting scheme
♦ Construct an \(m \)-level tree
♦ All the nodes holding copies of the data are leaves at level \(m-1 \)
♦ Add virtual nodes at the higher levels up to the root at level \(0 \) - added nodes are virtual groupings of the real nodes
♦ Each node at level \(i \) will have exactly \(L_{i+1} \) children
Quorum Generation Algorithm

- Assign one vote to each node in the tree
- Set Read quorum and write quorum sizes at level i, r_i and w_i so that: $r_i + w_i > L_i$; $w_i > L_i / 2$
- Following algorithm is used recursively:
 - Read-mark the root at level 0
 - At level 1 - read-mark r_1 nodes
 - Proceeding from level i to level $i+1$
 - read-mark r_{i+1} children of each of the nodes read-marked at level i
 - You cannot read-mark a node which does not have at least r_{i+1} non-faulty children
 - Proceed until $i = m-1$
- The read-marked leaves form a read quorum
- Forming a write-quorum is similar

Example - a Tree for Hierarchical Quorum Generation

- $m = 3$
- $L_1 = L_2 = 3$
Algorithm - Example

- $w_i = 2$ for $i=1,2$, $r_i = L_i - w_i + 1 = 2$
- Starting at the root - read-mark two of its children - say X and Y
- Read-mark two children for X and Y - say A,B - for X, and D,E for Y
- Read quorum is the set of read-marked leaves - A, B, D, E

Example - cont.

- Suppose D is faulty - cannot be part of the read quorum
- We have to pick another child of Y - say F - to be in the read quorum
- If two of Y's children are faulty - we cannot read-mark Y - we have to backtrack and try read-marking Z instead
- Exercise: List read quorums generated by $r_1 = 1$, $w_1 = 3$, $r_2 = 2$, $w_2 = 2$
Hierarchical vs. Non-Hierarchical Approach

♦ Read quorum consists of just 4 copies
♦ Similarly, we can have a write quorum with 4 copies
♦ For the non-hierarchical approach with one vote per node, \(r + w > 9 ; w > 9/2 \)
♦ \(w \) is at least 5, compared to 4 in the tree approach
♦ To prove that the hierarchical approach works, we show that every possible read quorum has to intersect every possible write quorum in at least one node

Primary Backup Approach

♦ A node is designated as the primary - all accesses are through that node
♦ Other nodes are designated as backups
♦ Under normal operation - all writes to the primary are also copied to the functional backups
♦ When the primary fails - one of the backup nodes is chosen to take its place