Duplex Systems

- Both processors execute the same task
 - If outputs are in agreement - result is assumed to be correct
 - If results are different - we can not identify the failed processor
 - A higher-level software has to decide how failure is to be handled
 - This can be done using one of several methods
Duplex Reliability

♦ Two active identical processors with reliability $R(t)$
♦ Lifetime of duplex - time until both processors fail
♦ C - Coverage Factor - probability that a faulty processor will be correctly diagnosed, identified and disconnected
♦ $R_{\text{duplex}}(t)$ - the reliability of duplex system:

$$R_{\text{duplex}}(t) = R_{\text{comp}}(t) \left[R^2(t) + 2C R(t)(1 - R(t)) \right]$$

$R_{\text{comp}}(t)$ - reliability of comparator

Duplex - Constant Failure Rates

♦ Each processor has a constant failure rate λ
♦ Ideal comparator - $R_{\text{comp}}(t)=1$

♦ Duplex reliability -

$$R_{\text{duplex}}(t) = e^{-2\lambda t} + 2Ce^{-\lambda t} \left(1 - e^{-\lambda t}\right)$$

$$\text{MTTF}_{\text{duplex}} = \frac{1}{2\lambda} + \frac{C}{\lambda}$$
Fault Detection: First Method - Acceptance Tests

♦ Acceptance Test - a range check of each processor's output

♦ Example - the pressure in a gas container must be in some known range

♦ We use semantic information of the task to predict which values of output indicate an error

♦ How should the acceptance range be picked?

Acceptance Test - Sensitivity Vs. Specificity

♦ Narrow acceptance range: high probability of identifying an incorrect output, but also a high probability that a correct output will be misidentified as erroneous (false positive)

♦ Wide acceptance range: low probability of both

♦ Sensitivity - the (conditional) probability that the test will recognize an erroneous output as such

♦ Specificity - the (conditional) probability that the output is erroneous if the test identified it as such

♦ Narrow range - high sensitivity but low specificity

♦ Wide range - low sensitivity but high specificity
Second Method – Hardware Testing

- Both processors are subjected to diagnostic tests
- The processor which fails the test is identified as faulty
- Real-life tests are never perfect
- **Test Coverage** - same as **test sensitivity** - the probability that the diagnostic test can identify a faulty processor as such
- **Test Transparency** - the complement of the **test coverage** - the probability that the test passes a faulty processor as good

Third Method – Forward Recovery

- Use a third processor to repeat the computation carried out by the duplex
- If only one of the three processors is faulty, the one that disagrees is the faulty one
- It is possible to use a **combination** of these methods
- **Acceptance test** - quickest to run but often the least sensitive
Pair & Spare System

♦ Avoid disruption of operation upon a mismatch between the two modules in a duplex
♦ Disconnect duplex and transfer task to spare pair
♦ Test offline, and if fault is transient - mark duplex as a good spare

Triplex-Duplex Architecture

♦ Form a triplex out of duplexes
♦ When processors in a duplex disagree, both are switched out
♦ Allows simple identification of faulty processors
♦ Triplex can function even if only one duplex is left - duplex allows fault detection
The Poisson Process - Assumptions

♦ Non-deterministic events of some kind occurring over time with the following probabilistic behavior
♦ For some constant \(\lambda \) and a very short interval of length \(\Delta t \):
 ♦ 1. Probability of one event occurring during \(\Delta t \) is \(\lambda \Delta t \) plus a negligible term
 ♦ 2. Probability of more than one event occurring during \(\Delta t \) is negligible
 ♦ 3. Probability of no events occurring during \(\Delta t \) is \(1 - \lambda \Delta t \) plus a negligible term

Poisson Process - Derivation

♦ \(N(t) \) - number of events occurring during \([0, t]\)
♦ For a given \(t \), \(N(t) \) is a random variable
♦ \(P_k(t) = \text{Prob}\{N(t)=k\} \) - probability of \(k \) events occurring during a time period of length \(t \) \((k=0, 1, 2, \ldots)\)
♦ Based on the previous assumptions:
 \[
P_k(t + \Delta t) = P_k(t)(1 - \lambda \Delta t) + P_{k-1}(t)\lambda \Delta t
 \]
 (for \(k=1, 2, \ldots \))

| and | \(P_0(t + \Delta t) \approx P_0(t)(1 - \lambda \Delta t) \) |
Poisson Process – Differential Equations

♦ This results in the differential equations:

\[
\frac{dP_k(t)}{dt} = -\lambda P_k(t) + \lambda P_{k-1}(t) \quad \text{and} \quad \frac{dP_0(t)}{dt} = -\lambda P_0(t)
\]

♦ With the initial conditions

\(P_k(0) = 0 \) (for \(k \geq 1 \)) and \(P_0(0) = 1 \)

♦ The solution (for \(k=0,1,2,... \)) is

\(P_k(t) = e^{-\lambda t} \frac{(\lambda t)^k}{k!} \)

♦ For a given \(t \), \(N(t) \) has a Poisson distribution with the parameter \(\lambda t \)

♦ For all values of \(t \), \(N(t) \) is a Poisson process with rate \(\lambda \)

Poisson Process – Properties

♦ For a Poisson process with rate \(\lambda \):

* Expected number of events in an interval of length \(t \) is \(\lambda t \)

* Length of time between consecutive events has an exponential distribution with parameter \(\lambda \) and mean \(1/\lambda \)

* Numbers of events in disjoint intervals are statistically independent

♦ Sum of two Poisson processes with parameters \(\lambda_1 \) and \(\lambda_2 \) is a Poisson process with parameter \(\lambda_1 + \lambda_2 \)
Example of a Poisson Process - Duplex with Redundancy

- Two active processors + unlimited number of inactive spares
- Induction process instantaneous, spares always functional
- Each processor has a constant failure rate λ
- Lifetime of a processor - Exponential distribution with parameter λ
- Time between two consecutive failures of same logical processor - Exponentially distributed with a parameter λ
- $N(t)$ - number of failures in one logical processor during $[0,t]$
- $M(t)$ - number of failures in the duplex system during $[0,t]$

Duplex with redundancy - Reliability Calculation

- Duplex has two processors - failure rate is 2λ
- Comparator failure rate - negligible
- Probability of k failures in duplex in $[0,t]$ -
 \[\text{Prob}(M(t)=k) = e^{-2\lambda t} \left(2\lambda t \right)^k / k! \]
 (for $k=0,1,2,...$)
- For the duplex not to fail, each of these failures must be detected and successfully replaced - probability C
- For k failures - probability C^k

\[R_{\text{duplex}}(t) = \sum_{k=0}^{\infty} \text{Prob}(k \text{ failures}) C^k = \sum_{k=0}^{\infty} e^{-2\lambda t} (2\lambda t)^k C^k / k! \]
\[= e^{-2\lambda t} \sum_{k=0}^{\infty} (2\lambda tC)^k / k! = e^{-2\lambda t} \sum_{k=0}^{\infty} \frac{(2\lambda tC)^k}{k!} = e^{-2\lambda t} e^{2\lambda tC} = e^{-2\lambda (1-C)t} \]
Duplex with Redundancy Reliability - Alternative Derivation

- Individual processors fail at rate λ.
- Rate of failures in the duplex is 2λ.
- Probability C of each failure to be successfully dealt with, and $1-C$ to cause duplex failure.
- Failures that crash the duplex occur with rate $2\lambda(1-C)$.

The reliability of the system is $e^{-2\lambda(1-C)t}$.

More Complex Systems

- NMR systems in which failing processors are identified and replaced from an infinite pool of spares - similar calculation to duplex.
- Finite set of spares - the summation in the reliability derivation is capped at that number of spares, rather than going to infinity.
- Other variations of duplex systems -
 - One processor is active while the second is a standby spare.
 - Processors can be repaired when they become faulty.
- Combinatorial arguments may be insufficient for reliability calculation in more complex systems.
- If failure rates are constant, we can use Markov Models for reliability calculations.
Markov Chains - Introduction

- Markov Models provide a structured approach for the derivation of the reliability of complex systems.
- A Markov Chain is a stochastic process $X(t)$ - an infinite sequence of random variables indexed by time t, with a special probabilistic structure.
- For a stochastic process to be a Markov Chain, its future behavior must depend only on its present state, and not on any past state.
- $X(t+s)$ depends on $X(t)$, but given $X(t)$, $X(t+s)$ does not depend on any $X(t')$ for $t' < t$.
- If $X(t)=i$ - the chain is in state i at time t.
- We deal only with Markov Chains with continuous time ($0 \leq t \leq \infty$) and discrete state ($X(t)=0,1,2,...$).

Markov Chain - Probabilistic Interpretation

- $\text{Prob}\{X(t+s)=j \mid X(t)=i, X(t')=k\} = \text{Prob}\{X(t+s)=j \mid X(t)=i\} \quad (t < t')$.
- Once the chain moves into state i, it stays there for a length of time which has an exponential distribution with parameter λ_i - it has a constant rate λ_i of leaving state i.
- The probability that when leaving state i the chain will move to state j (with $j \neq i$) is P_{ij}.
- Transition rate from state i to state j is $\lambda_{ij} = P_{ij} \lambda_i$.

$$\sum_{j \neq i} P_{ij} = 1 \quad \sum_{j \neq i} \lambda_{ij} = \lambda_i$$
State Probabilities

- \(P_i(t) \) - probability that the process is in state \(i \) at time \(t \), given it started at state \(i_0 \) at time 0

- For given time instant \(t \), state \(i \) and a very small interval of time \(\Delta t \), the chain can be in state \(i \) at time \(t+\Delta t \) in one of the following cases:
 - It was in state \(i \) at time \(t \) and has not moved during the interval \(\Delta t \) - probability \(\approx P_i(t)(1-\lambda_i \Delta t) \)
 - It was at some state \(j \) at time \(t \) (\(j \neq i \)) and moved from \(j \) to \(i \) during \(\Delta t \): probability \(\approx P_j(t)\lambda_{ji} \Delta t \)
 - Probability of more than one transition is negligible if \(\Delta t \) is small enough

- These assumptions result in
 \[
 P_i(t + \Delta t) \approx P_i(t)(1-\lambda_i \Delta t) + \sum_{j \neq i} P_j(t)\lambda_{ji} \Delta t
 \]

Differential Equations for State Probabilities \(P_i(t) \)

- \[
 \frac{dP_i(t)}{dt} = -\lambda_i P_i(t) + \sum_{j \neq i} \lambda_{ji} P_j(t)
 \]
 Since \(\sum_{j \neq i} \lambda_{ij} = \lambda_i \)

- \[
 \frac{dP_i(t)}{dt} = -\sum_{j \neq i} \lambda_{ij} P_i(t) + \sum_{j \neq i} \lambda_{ji} P_j(t)
 \]

- This (for \(i = 0,1,2,\ldots \)) can now be solved, using the initial conditions
 \(P_{i_0}(0) = 1 \) and \(P_i(0) = 0 \) for \(i \neq i_0 \)
Markov Chain for a Duplex with a Standby

- **Example:** One active processor and a one standby spare - connected when the active unit fails
- **Constant failure rate** λ of an active processor
- **C- coverage factor** - probability that a failure of the active processor is correctly detected and the spare processor is successfully connected
- **The Markov chain** -

\[\begin{aligned}
 &\text{2} \quad \text{Both good} \quad \lambda e \\
 &\text{1} \quad \text{One failed} \quad \lambda \\
 &\text{0} \quad \text{Failed System} \quad \lambda(1 - e)
\end{aligned} \]

Differential Equations for Duplex with Standby

\[\begin{aligned}
 dP_1(t)/dt &= -P_1(t) \sum_{j \neq i} \lambda_{ij} + \sum_{j \neq i} \lambda_{ji} P_j(t) \\
 dP_2(t)/dt &= -\lambda P_2(t) \\
 dP_1(t)/dt &= \lambda CP_2(t) - \lambda P_1(t) \\
 dP_0(t)/dt &= \lambda(1 - C)P_2(t) + \lambda P_1(t)
\end{aligned} \]

- **Initial conditions:**
 - $P_2(0) = 1$, $P_1(0) = P_0(0) = 0$
Reliability of Duplex with Standby

♦ Solution of differential equations:

\[P_2(t) = e^{-\lambda t} \]
\[P_1(t) = C\lambda t \cdot e^{-\lambda t} \]
\[P_0(t) = 1 - P_2(t) - P_1(t) \]

\[R_{\text{system}}(t) = 1 - P_0(t) = P_2(t) + P_1(t) = e^{-\lambda t} + C\lambda t \cdot e^{-\lambda t} \]

♦ Exercise - derive this expression using combinatorial arguments

Markov Chain for a Duplex with Repair

♦ Two active processors: each with failure rate \(\lambda \) and repair rate \(\mu \) (repair time is exponential with parameter \(\mu \))

♦ The Markov model

\[
\frac{dP_i(t)}{dt} = -P_i(t)\sum_{j \neq i} \lambda_{ij} + \sum_{j \neq i} \lambda_{ji} P_j(t)
\]

♦ The differential equations -

\[
\frac{dP_2(t)}{dt} = -2\lambda P_2(t) + \mu P_1(t)
\]
\[
\frac{dP_1(t)}{dt} = 2\lambda P_2(t) + 2\mu P_0(t) - (\lambda + \mu) P_1(t)
\]
\[
\frac{dP_0(t)}{dt} = \lambda P_1(t) - 2\mu P_0(t)
\]

♦ Initial conditions -

\(P_2(0) = 1, P_1(0) = P_0(0) = 0 \)
Duplex with Repair - State Probabilities

- The solution to the differential equations -

\[P_2(t) = \mu^2/(\lambda + \mu)^2 + 2\lambda\mu/(\lambda + \mu)^2 e^{-(\lambda+\mu)t} + \lambda^2/(\lambda + \mu)^2 e^{-2(\lambda+\mu)t} \]

\[P_1(t) = 2\lambda\mu/(\lambda + \mu)^2 + 2\lambda(\lambda - \mu)/(\lambda + \mu)^2 e^{-(\lambda+\mu)t} - 2\lambda^2/(\lambda + \mu)^2 e^{-2(\lambda+\mu)t} \]

\[P_0(t) = 1 - P_2(t) - P_1(t) \]

Availability vs. Reliability

- In systems without repair, mainly the reliability measure is of significance
- With repair - availability is more meaningful than reliability

- Point Availability - \(Ap(t) \)
 \[= \text{Prob(The system is operational at time } t) = 1 - P_0(t) \]
- Reliability - \(R(t) = \text{Prob(The system is operational during [0,t])} \) - can be calculated by removing the transition from state 0 to state 1, solving the resulting new differential equations - \(R(t) = 1 - P_0(t) \)
Long-Run Availability

♦ We calculate A - the long-run availability - the proportion of time in the long run that the system is operational

♦ We first calculate the steady-state probabilities - $P_2(\infty)$, $P_1(\infty)$, and $P_0(\infty)$ (or P_2,P_1,P_0)

♦ These steady-state probabilities can be calculated in one of the two methods:

* letting t approach ∞ in $P_i(t)$
* setting $dP_i(t)/dt=0$ ($i=0,1,2$) and solving the linear equations for P_i, using the relationship $P_2+P_1+P_0=1$

$$A=1-P_0$$

Duplex with Repair - Long-Run Availability

♦ Steady state probabilities -

$$P_2 = \frac{\mu^2}{(\lambda + \mu)^2}$$

$$P_1 = \frac{2\lambda \mu}{(\lambda + \mu)^2}$$

$$P_0 = \frac{\lambda^2}{(\lambda + \mu)^2}$$

♦ Long-run availability -

$A = P_2 + P_1 = 1 - P_0$

$$= \frac{(\mu^2 + 2\lambda \mu)}{(\lambda + \mu)^2} = 1 - \frac{\lambda^2}{(\lambda + \mu)^2}$$