Cube-Connected Cycles Networks

Hypercube:
- multiple paths between nodes
- low diameter
- cost - a high node degree
- \(n \) ports - new node design required when size of network increases

Cube-Connected Cycles (CCC) Network:
- Keeps degree of a node fixed at 3 or less (for any \(n \))

Example: A CCC network that corresponds to the \(H_3 \) hypercube
- Each node of degree 3 in \(H_3 \) is replaced by a cycle consisting of 3 nodes
General CCC Network

♦ Each node of degree n in the hypercube H_n is replaced by a cycle containing n nodes where the degree of every node in the cycle is 3.

♦ The resulting $CCC(n,n)$ network has $n \cdot 2^n$ nodes.

♦ We may have a $CCC(n,k)$ network with $k \cdot 2^n$ nodes where each cycle includes $k \geq n$ nodes with the additional $k-n$ nodes having a degree of 2.

♦ The extra nodes of degree 2 have a very small impact on the network properties.

♦ We will restrict ourselves to $k=n$.

Labeling CCC Nodes

♦ CCC node label - $(i;j)$

 * i - an n-bit binary number - label of corresponding hypercube node.
 * $j (0 \leq j \leq n-1)$ - position of node within cycle.

♦ Two nodes $(i;j)$ and $(i';j')$ are linked by an edge in the CCC if and only if

 * either $i = i'$ and $j - j' = \pm 1 \mod n$ (link along the cycle).
 * or $j = j'$ and i differs from i' in precisely the jth bit (dimension-j edge in the hypercube).

♦ Example: Nodes 0 and 2 in H_3 connected through a dimension-1 edge that corresponds to the edge connecting nodes $(0,1)$ and $(2,1)$.
Hypercube vs. CCC

- CCC has lower degree of nodes compared to hypercube
- CCC has a higher diameter than hypercube
- Hypercube has a diameter of \(n \)
- The \(CCC(n,n) \) has a diameter of
 \[
 2n + \left\lfloor \frac{n}{2} \right\rfloor - 2 \approx 2.5n
 \]
- Routing of messages in the CCC is more complicated than in the hypercube
- Fault tolerance of the CCC is higher - failure of a single node in the CCC is similar to a single faulty link in the hypercube
- No closed form expression for reliability of CCC

Loop Networks

- The cycle topology (also called loop network) that is replicated in the CCC network can serve as an interconnection network
- **Advantages:**
 - simple routing algorithm
 - small node degree
- **Disadvantages:**
 - an \(n \)-node unidirectional loop has a diameter of \(n-1 \) - an average of \(n/2 \) intermediate forwarding nodes per message
 - unidirectional loop network not fault tolerant - a single node or link failure disconnects the network
Chordal Networks

- Reduce diameter and improve fault tolerance of a unidirectional loop network by adding extra links - called chords
- Each node has an additional backward link connecting it to a node at a distance s, called the skip distance
- Node i ($0 \leq i \leq n-1$) has a forward link to node $(i+1) \mod n$ and a backward link to node $(i-s) \mod n$
- Degree of every node is 4 for any value of n
- Example: 15-node chordal network with a skip distance of 3

Minimizing Diameter of Chordal Networks

- Choice of s affects diameter D
- Looking for s that minimizes D
- Diameter - longest distance from source to destination - depends on routing
- Assumption: Routing uses backward chords as long as this is advantageous
- b - number of backward chords used
- bs - number of nodes skipped
- b' - maximum value of b
- $b's + b' \geq n$

$$b' = \left\lfloor \frac{n}{s + 1} \right\rfloor$$
Minimizing Diameter – Cont.

- We may need to add a maximum of $s-1$ forward links to b'

$$D = \left\lfloor \frac{n}{s + 1} \right\rfloor + (s - 1)$$

- For most values of n, $s = \left\lfloor \sqrt{n} \right\rfloor$ minimizes D and

$$D_{opt} \approx 2\sqrt{n} - 1.$$

- Example:
 - $n=15$
 - optimal $s = 3$
 - minimal $D = 5$

Reliability of Chordal Networks

- Exact reliability calculation - complicated

- Instead - calculate number of paths between the two farthest nodes in network

- If the number of these paths is maximized - reliability is likely to be high

- The minimum length between the two farthest nodes is $b'+s-1$

- The number of paths of length $b'+s-1$ consisting of b' backward chords and $(s-1)$ forward links is

$$\binom{b'}{s-1}$$
Increasing Reliability of Chordal Networks

♦ s that maximizes $\left(\frac{b' + s - 1}{s - 1} \right)$ is $s = \lfloor \sqrt{n} \rfloor$

♦ However, for most values of n, $s = \lfloor \sqrt{n} \rfloor$ yields the same number of paths

♦ Conclusion: In most cases, the value of s that minimizes the diameter also maximizes the number of alternate paths

♦ $s = \lfloor \sqrt{n} \rfloor$ should be selected in order to improve the reliability of the network

Reliability of Point-to-Point Networks

♦ Not necessarily a regular structure - often more than one path between any two nodes

♦ Path (or Terminal) Reliability - the probability that there exists an operational path between two specific nodes, given the probabilities of link failures

♦ Example - calculating the path reliability for the source-destination pair $N_1 - N_4$
Path Reliability - Example I

Three paths from \(N_1 \) to \(N_4 \):

\[P_1 = \{ X_{1,2}, X_{2,4} \} \]

\[P_2 = \{ X_{1,3}, X_{3,4} \} \]

\[P_3 = \{ X_{1,2}, X_{2,3}, X_{3,4} \} \]

\(P_{i,j} (Q_{i,j}) \) - probability that link \(X_{i,j} \) is good (faulty)

Probability of node failure - incorporated into failure probability of outgoing links

Events \{path \(P_i \) is operational\} must be modified to an equivalent set of mutually exclusive events - otherwise some cases will be counted more than once

Mutually exclusive events - (I) \(P_1 \) is up; (II) \(P_2 \) is up and \(P_1 \) is down; (III) \(P_3 \) is up and both \(P_1 \) and \(P_2 \) are down

\[
R_{N_1,N_4} = P_{1,2}P_{2,4} + P_{1,3}P_{3,4} \left[1 - P_{1,2}P_{2,4} \right] + P_{1,2}P_{2,3}P_{3,4} \left[Q_{1,3}Q_{2,4} \right]
\]

Calculating Path Reliability - General

Path reliability of a network with \(m \) paths \(P_1, \ldots, P_m \) from source \(N_s \) to destination \(N_d \)

\(E_i (\overline{E}_i) \) - event in which \(P_i \) is operational (faulty)

\[
R_{N_s,N_d} = \text{Prob\{Operational Path Exists\}} = \text{Prob\{ } \bigcup \bigcup E_i \text{\} }
\]

\(m \) events decomposed into mutually exclusive events -

\[
E_1 \cup E_2 \cup \cdots \cup E_m = E_1 \cup (E_2 \cap \overline{E}_1) \cup (E_3 \cap \overline{E}_1 \cap \overline{E}_2) \\
\cdots \cup (E_m \cap \overline{E}_1 \cap \overline{E}_2 \cap \cdots \cap \overline{E}_{m-1})
\]

and

\[
R_{N_s,N_d} = \text{Prob}\{E_1\} + \text{Prob}\{E_2 \cap \overline{E}_1\} + \cdots + \text{Prob}\{E_m \cap \overline{E}_1 \cap \overline{E}_2 \cap \cdots \cap \overline{E}_{m-1}\}
\]

or using conditional probabilities

\[
R_{N_s,N_d} = \text{Prob}\{E_1\} + \text{Prob}\{E_2\}\text{Prob}\{\overline{E}_1 | E_2\} \\
+ \cdots + \text{Prob}\{E_m\}\text{Prob}\{\overline{E}_1 \cap \overline{E}_2 \cap \cdots \cap \overline{E}_{m-1} | E_m\}
\]
Calculating Conditional Probabilities

\[
\text{Prob}(\overline{E_1 \cap \cdots \cap E_{i-1}} \mid E_i) = \text{Prob}(\overline{E_{1\mid i} \cap \cdots \cap E_{i-1\mid i}})
\]

\(E_{j\mid i}\) - the event in which \(P_j\) is faulty given that \(P_i\) is operational

- To identify the links which must fail so that \(E_i\) occurs but not \(E_j\), conditional sets are used

\[P_{j\mid i} = P_j - P_i = \{x_k \mid x_k \in P_j \text{ and } x_k \not\in P_i\}\]

- At least one link in \(P_{j\mid i}\) needs to fail

Path Reliability - Example II

- This six-node network has 9 links - 6 uni-directional and 3 bi-directional

- All paths from \(N_1\) to \(N_6\) -

\[
\begin{align*}
P_1 &= \{x_{1,3}, x_{3,5}, x_{5,6}\} \\
P_2 &= \{x_{1,2}, x_{2,5}, x_{5,6}\} \\
P_3 &= \{x_{1,2}, x_{2,4}, x_{4,6}\} \\
P_4 &= \{x_{1,3}, x_{3,5}, x_{4,5}, x_{4,6}\} \\
P_5 &= \{x_{1,3}, x_{2,3}, x_{2,4}, x_{4,6}\} \\
P_6 &= \{x_{1,3}, x_{2,3}, x_{2,5}, x_{3,6}\} \\
P_7 &= \{x_{1,2}, x_{2,5}, x_{4,5}, x_{4,6}\}
\end{align*}
\]

- Paths are ordered from shortest to longest
Calculating Path Reliability for Example II

♦ The first term for the reliability equation is \(\text{Prob}(E_1) = P_{1,3} P_{3,5} P_{5,6} \)

♦ To calculate the second term in the reliability equation - the conditional set is used
 \[P_1 = \{x_{1,3}, x_{3,5}, x_{5,6}\} \]
 \[P_2 = \{x_{1,2}, x_{2,5}, x_{5,6}\} \]
 \[P_{1|2} = P_1 - P_2 = \{x_{1,3}, x_{3,5}\} \]

♦ At least one of the links in this set must fail so that \(P_1 \) is faulty given that \(P_2 \) is operational

♦ The second term in the probability equation - \(P_{1,2} P_{2,5} P_{5,6}(1 - P_{1,3} P_{3,5}) \)

Example II - Cont.

♦ For calculating other terms in the sum - intersection of several conditional sets must be considered
 \[P_1 = \{x_{1,3}, x_{3,5}, x_{5,6}\} \]
 \[P_2 = \{x_{1,2}, x_{2,5}, x_{5,6}\} \]
 \[P_3 = \{x_{1,2}, x_{2,4}, x_{4,6}\} \]
 \[P_4 = \{x_{1,3}, x_{3,4}, x_{4,5}, x_{4,6}\} \]

♦ Calculating the fourth term - expression for \(P_4 \) - the conditional sets are: \(P_{1|4} = \{X_{5,6}\}; P_{2|4} = \{X_{1,2}, X_{2,5}, X_{5,6}\}; P_{3|4} = \{X_{1,2}, X_{2,4}\} \)

♦ \(P_{1|4} \) is included in \(P_{2|4} \) - if \(P_{1|4} \) is faulty, so is \(P_{2|4} \) - \(P_{2|4} \) can be ignored

♦ The fourth term in the reliability equation - \(P_{1,3} P_{3,5} P_{4,5} P_{4,6} (1 - P_{5,6}) (1 - P_{1,2} P_{2,4}) \)
Example II - Cont.

♦ Calculating the third term:

\[p_1 = \{x_{1,3}, x_{3,5}, x_{5,6}\} \]

\[p_2 = \{x_{1,2}, x_{2,5}, x_{5,6}\} \]

\[p_3 = \{x_{1,2}, x_{2,4}, x_{4,6}\} \]

\[P_{1|3} = \{x_{1,3}, x_{3,5}, x_{5,6}\}, \quad P_{2|3} = \{x_{2,5}, x_{5,6}\} \]

♦ The event both \(P_{1|3} \) and \(P_{2|3} \) are faulty needs to be divided into disjoint cases:

♦ (I) \(X_{5,6} \) is faulty

♦ (II) \(X_{5,6} \) is operational and both \(X_{1,3} \) and \(X_{2,5} \) are faulty

♦ (III) \(X_{5,6} \) and \(X_{1,3} \) are up, and \(X_{3,5} \) and \(X_{2,5} \) are faulty

♦ Resulting expression for third term

\[p_{1,2}p_{2,4}p_{4,6}(q_{5,6} + p_{5,6}q_{1,3}q_{2,5} + p_{5,6}p_{1,3}q_{3,5}q_{2,5}) \]

♦ Remaining terms - calculated similarly

♦ Path reliability is the sum of all thirteen terms

Alternative Calculation of Path Reliability

♦ A given number of components (links)

♦ Each component can be up or down

♦ We need to calculate the probability that certain combinations of the components are all up

♦ In the last example - 9 links with \(2^9 \) states

♦ Probability of each state obtained by multiplying 9 factors of the form \(p_{i,j} \) or \(q_{i,j} \)

♦ We add up the probabilities of all the states in which a path from node \(N_1 \) to node \(N_6 \) exists

♦ The sum is the path reliability \(R_{N_1,N_6} \)
Fault-Tolerant Routing

♦ **Objective:** get a message from source to destination despite a subset of the network being faulty

♦ **Basic idea:** if no shortest or most convenient path is available because of failures, reroute message through other paths to destination

♦ **Focus on unicast routing** - a message is sent from a source to just one destination

♦ **Multicast** - copies of a message sent to a number of nodes - is an extension of the unicast problem

Classification of Routing Algorithms

♦ **Centralized routing**
 * A central controller knows the network state - faulty links or nodes, congested links - and selects path for each message
 * **Variation:** Source of message specifies the route for that message

♦ **Distributed routing**
 * No central controller - each intermediate node decides to which node to send it next

♦ **Unique routing**
 * One path for each source-destination pair

♦ **Adaptive routing**
 * Path selected according to network conditions (congestion)

♦ **Implementing fault tolerance in centralized routing**
 * A centralized router that knows the state of each link
 * Can use graph-theoretic algorithms to determine all paths
 * Secondary considerations (load balancing, number of hops) can be used to select the path
Routing in Injured Hypercubes

♦ Routing algorithm must be modified to route around the faulty nodes or links
♦ **Basic idea** - list the dimensions along which the packet must travel, and traverse them one by one
♦ As edges are traversed and are crossed off the list
♦ If, due to a link or a node failure, the desired link is not available - another edge in the list, if any, is chosen for traversal
♦ If packet arrives at some node to find all dimensions on its list down - it backtracks to the previous node and tries again

Formal Routing Algorithm - Notations

♦ **TD** - list of dimensions that the message has traveled on - in order of traversal;
 TD^k - in reversed order
♦ **⊕_i=1^k** - exclusive-or operation carried out k times, sequentially
♦ **Example** - **⊕_i=1^3 a_i** means (a_1 ⊕ a_2) ⊕ a_3
♦ **D** - destination, **S** - source, **d=D⊕S**
 (⊕ - bitwise exclusive-or operation on corresponding bits of D and S)
♦ **SC(A)** - set of nodes visited if we travel on each of the dimensions listed in set A
♦ **Example** - at node 0010 - **SC(1,3)={0000,1000}**
Notations - Cont.

♦ e^i_n - n-bit vector consisting of a 1 in the i-th bit position and 0 everywhere else

♦ Example - $e^2_3 = 100$

♦ Packets are assumed to consist of

- (I) d: \(d = D \oplus S \)
- (II) Message being transmitted (the "payload")
- (III) List of dimensions taken so far - TD

♦ θ - append operation

- $TD \theta x$ - append x to the list TD

♦ $transmit(j)$ - send packet $(d \oplus e^i_j, \text{message}, TD \theta j)$ along the j-th-dimensional link from the present node

Routing Algorithm for Injured Hypercubes

If $(d = 0 \cdots 0)$$\hspace{1cm}$the destination has been reached. Exit.
else
 for $j = 0$ to $(n-1)$ do
 if $(|d| = 1)$ \&\& (j-th dimension link from this node is nonfaulty) \&\& (\(e^i_j \not\in SC(TD^F) \))
 $\hspace{1cm}$TRANSMIT(j)
 else
 exit
 end
if (there is a non-faulty link not in SC(TD^F))
 Let h be one such link.
else
 $g = \max(m : e^m_{TD}(i) = 0 \cdots 0)$
 if $(g = \text{number of elements in SC(TD))}$
 A path does not exist
 exit
 else
 $h = (g + 1)^t$ st element in TD^F.
 end
 TRANSMIT(h)
end
Example of Routing in H_3

- H_3 with faulty node 011
- node 000 wants to send a packet to 111
- At 000, $d=111$ - sends the message out on dimension-0, to node 001
- At 001, $d = 110$ and $TD=(0)$ - attempts dimension-1 edge - impossible
- Bit 2 of d is also 1 - checks and finds that the dimension-2 edge to 101 is available - message is sent to 101 and then to 111
- Exercise - What if both 011 and 101 are down?

Origin-Based Routing in Mesh

- Depth-first strategy:
 - No advance information about faulty nodes
 - Backtracks if it arrives at a dead-end
- If faulty regions are known in advance - no backtracking is necessary
- Topology - two-dimensional $N\times N$ mesh with at most $N-1$ failures
 - Can be extended to meshes of dimension ≥ 3 and more than $N-1$ failures
- Assumptions:
 - All faulty regions are square, if not, additional nodes are declared to have pseudo faults
 - Each node knows the distance along each direction to the nearest faulty region in that direction
 - One node defined as the origin
 - Origin chosen so that its row and column do not have any faulty nodes
 » possible since there are no more than $N-1$ failures
Origin-Based Routing Algorithm - Definitions

♦ Sending a message from node S to node D

♦ Definitions:

♦ **IN-path** - edges that take the message closer to the origin

♦ **OUT-path** - takes the message farther away from the origin (either may be empty)

♦ **Outbox** is the smallest rectangular region that contains both the origin and the destination

♦ V is a *safe node* with respect to D and a set of faulty nodes F if

 * V is in the outbox for D
 * there exists a fault-free **OUT-path** from V to D

♦ **Diagonal band** for D - all nodes V in the outbox such that

 $x_V - y_V = x_D - y_D + c$ \[c \in \{-1, 0, 1\} \]

♦ Once we get to a safe node, there exists an **OUT-path** from that node to D

♦ Each step along an **OUT-path** increases the distance to the origin - the message cannot be traveling forever in circles

Origin-Based Routing Algorithm

♦ **Three phases**:

♦ **Phase 1**: The message is routed on an **IN path** until it reaches the outbox, at node U

♦ **Phase 2**: Compute the distance from U to the nearest safe node and compare to the distance to the nearest faulty region in that direction

♦ If the safe node is closer than the fault, route to the safe node; otherwise, continue to route on the **IN links**

♦ **Phase 3**: Once the message is at a safe node U, if there is a safe nonfaulty neighbor V that is closer to the destination, send it to V; otherwise, U must be on the edge of a faulty region

♦ In such a case, move the message along the edge of the faulty region toward the destination D, and turn toward the **diagonal band** when it arrives at the corner of the faulty square
Origin-Based Routing - Example

♦ Routing a message from node S at the northwest end of the network to D
♦ The message first moves along the IN links, getting closer to the origin
♦ It enters the outbox at node A
♦ Since there is a failure directly east of A, it continues on the IN links until it reaches the origin
♦ Then it continues, skirting the edge of the faulty region until it reaches node B
♦ At this point, it recognizes the existence of a safe node immediately to the north and sends the message through this node to the destination