Algorithm-based Fault Tolerance (ABFT)

♦ Data redundancy at the application level
 * Higher efficiency when applied to large data arrays
 * Examples: matrix-based and signal processing applications
 * Given \(n \times m \) matrix \(A \) define the column checksum matrix
 \[
 A_C = \begin{bmatrix} A \\ eA \end{bmatrix}
 \]
 where \(e = [1 \ldots 1] \)
 * Row check matrix \(A_R = [A Af] \) where \(f = [1 \ldots 1]^T \)
 * \((n+1) \times (m+1)\) full checksum matrix
 \[
 A_F = \begin{bmatrix} A Af \\ eA eAf \end{bmatrix}
 \]
 * Column and row checksum matrices can detect a single fault
 * Full checksum matrix can locate a fault – if checksum accurate the fault can be corrected
ABFT for Matrix Operations

♦ Matrix addition $A+B=C$ can be replaced by
 $A_C + B_C = C_C \text{ or } A_R + B_R = C_R \text{ or } A_F + B_F = C_F$

♦ Matrix multiplication $A \times B = C$
 $A_B = C_R \text{ or } A_C B = C_C \text{ or } A_C B_R = C_F$

♦ Faults can be located and corrected by adding weighted checksum row(s) or column(s)

\[
A = \begin{bmatrix} A & eA \\ e_A & A_w \end{bmatrix} \text{ where } e_w = [1,2 \cdots 2^{n-1}] \\
A_R = \begin{bmatrix} A & Af_w \\ e_A & Af_w \end{bmatrix} \text{ where } f_w = [1,2 \cdots 2^{m-1}]^T \\
A_F = \begin{bmatrix} A & Af_w \\ e_A & Af_w \\ e_A & Af_w \end{bmatrix}
\]

Weighted Checksum Code (WCC)

♦ Example for single error correction: $A_C = \begin{bmatrix} A \\ eA \\ e_A \end{bmatrix}$
 * Suppose an error detected in column j
 * WCS1/WCS2 unweighted/weighted checksum eA/e_A for column j
 * Calculate error syndromes:
 \[
 S_1 = \sum_{i=1}^{n} a_{i,j} - WCS1 \\
 S_2 = \sum_{i=1}^{n} 2^{i-1} a_{i,j} - WCS2
 \]
 * If only one syndrome is nonzero - the checksum is wrong
 * If both are nonzero $S_2/S_1 = 2^{k-1}$ implying that $a_{k,j}$ is in error
 \[
 a_{k,j} = a_{k,j} - S_1
 \]
 * Extra rows (columns) can be added with
 \[
 e_w = [1 \cdots 2^{d-1} \cdots (2^{n-1}) \cdots 2^{d-1}] \\
 f_w = [1^{d-1} 2^{d-1} \cdots (2^{m-1}) \cdots d-1]^T
 \]
 * The weighted checksum with v rows - Hamming distance $v+1$: detecting v or correcting $\lfloor v/2 \rfloor$ errors
Checksum Overflow

♦ For large n and m checksums can overflow
 * Single-precision 1-bit checksum - result calculated mod-2^l
 * A single error < 2^l and will be detected
 * Weighted checksum would need more bits to avoid overflow
 * Instead of $e_w = [1 \ 2 \ \cdots \ 2^{n-1}]$ use $e_w = [1 \ 2 \ \cdots \ n]$
 * If both syndromes for column j are nonzero and $S_2/S_1 = k$
 $$a_{k,j} = a_{k,j} - S_1$$
 * Round-off errors in floating-point can result in nonzero syndromes
 * Must select δ and only syndrome $> \delta$ will indicate an error
 * Value of δ: probability of fault detection vs. false alarms
 * To simplify selection of δ - partition into submatrices with separate checksums