Content of this Chapter

• The RSA Cryptosystem
• Implementation aspects
• Finding Large Primes
• Attacks and Countermeasures
The RSA Cryptosystem

- Hellman and Diffie published their landmark public-key paper in 1976
- Rivest, Shamir and Adleman proposed the asymmetric RSA cryptosystem in 1977
- Until now, RSA is the most widely use asymmetric cryptosystem although elliptic curve cryptography (ECC) becomes increasingly popular
- RSA is mainly used for two applications
 - Transmission of (i.e., symmetric) keys
 - Digital signatures

Encryption and Decryption

- RSA operations are done over the integer ring Z_n (i.e., arithmetic modulo n), where $n = p \times q$, with p, q large primes
- Encryption and decryption are exponentiations in the ring

Definition: Given the public key $(n,e) = k_{pub}$ and the private key $d = k_{pr}$ we write

\[y = e_{k_{pub}}(x) \equiv x^e \mod n \]
\[x = d_{k_{pr}}(y) \equiv y^d \mod n \]

where $x, y \in Z_n$.

We call $e_{k_{pub}}()$ the encryption and $d_{k_{pr}}()$ the decryption operation.

- In practice x, y, n and d are very long integers (≥ 1024 bits)
- The security of the scheme relies on the fact that it is hard to derive the „private exponent“ d given the public-key (n, e)
Key Generation

- Like all asymmetric schemes, RSA has set-up phase during which the private and public keys are computed.

Output: public key: \(k_{\text{pub}} = (n, e) \) and private key \(k_{\text{pr}} = d \)

1. Choose two large primes \(p, q \)
2. Compute \(n = p * q \)
3. Compute \(\Phi(n) = (p-1) * (q-1) \)
4. Select the public exponent \(e \in \{1, 2, ..., \Phi(n)-1\} \) such that \(\text{gcd}(e, \Phi(n)) = 1 \)
5. Compute the private key \(d \) such that \(d * e \equiv 1 \mod \Phi(n) \)
6. RETURN \(k_{\text{pub}} = (n, e) \), \(k_{\text{pr}} = d \)

Remarks:
- Choosing two large primes \(p, q \) (in Step 1) is non-trivial.
- \(\text{gcd}(e, \Phi(n)) = 1 \) ensures that \(e \) has an inverse and, thus, there is always a private key \(d \).

Example: RSA with small numbers

ALICE

- Message \(x = 9 \)

BOB

1. Choose \(p = 7 \) and \(q = 11 \)
2. Compute \(n = p * q = 77 \)
3. \(\Phi(n) = (7-1) * (11-1) = 60 \)
4. Choose \(e = 7 \); \(\text{gcd}(7,60) = 1 \)
5. \(d \equiv e^{-1} \equiv 43 \mod 60 \)

\(7 \times 43 = 301 = 1 \mod 60 \) (use EEA to get \(d \))

\(y = x^e = 9^7 = 4782969 \equiv 37 \mod 77 \)

\(y^d = 37^{43} \equiv 9 \mod 77 \)
Proof

- Show that \(x = y^d \mod n = (x^e)^d \mod n \)

 Case 1: \(\gcd(x,n)=1 \)

 1. Since \(d \cdot e \equiv 1 \mod \Phi(n) \) we can write \(d \cdot e = 1 + t \cdot \Phi(n) \)

 2. \((x^e)^d = x^{ed} \equiv x^{1+t \cdot \Phi(n)} \equiv x \mod n \)

 3. Based on Euler's theorem if \(\gcd(x,n)=1 \) then \(1 \equiv x^{\Phi(n)} \mod n \)

 4. Thus, \((x^{\Phi(n)})^t \equiv 1^t \mod n \equiv 1 \mod n \)

 Case 2: \(\gcd(x,n) \neq 1 \) then \(x=a \cdot p \) (or \(a \cdot q \))

 1. and 2. above

 3a. \(x^{\Phi(q)} = x^{q-1} = 1 \mod q \) since \(\gcd(x,q)=1 \) (Euler's theorem)

 3b. \((x^{\Phi(q)})^t = ((x^{q-1})^p)^t = 1 \mod q \) thus \((x^{\Phi(q)})^t = 1+b \cdot q \)

 4. \((x^{\Phi(n)}) \cdot x = (1+b \cdot q) \cdot x = x+x \cdot b \cdot q = x+ a \cdot p \cdot b \cdot q = x \mod n \)

Implementation aspects

- RSA uses only one arithmetic operation (modular exponentiation) which makes it conceptually simple

- But, due to the use of very long numbers, RSA is orders of magnitude slower than symmetric schemes, e.g., DES, AES

- When implementing RSA (esp. on a constrained device such as smartcards or cell phones) close attention has to be paid to the correct choice of implementation algorithm

- The square-and-multiply algorithm allows fast exponentiation, even with very long numbers
Square-and-Multiply

- **Basic principle**: Scan exponent bits from left to right and square/multiply operand accordingly

| Input: | Exponent H, base element x, Modulus n |
| Initialization: | $y = x$; | Output: | $y = x^H \mod n$ |

1. Determine binary representation $H = (h_t, h_{t-1}, ..., h_0)_2$
2. FOR $i = t-1$ TO 0
3. $y = y^2 \mod n$
4. IF $h_i = 1$ THEN
5. $y = y \cdot x \mod n$
6. RETURN y

- **Rule**: Square in every iteration (Step 3) and multiply current result by x if the exponent bit $h_i = 1$ (Step 5)
- Modulo reduction after each step keeps the operand y small

Example: Square-and-Multiply

- Computes x^{26} without modulo reduction
- Binary rep. of exponent: $26 = (1, 1, 0, 1, 0)_2 = (h_4, h_3, h_2, h_1, h_0)_2$

<table>
<thead>
<tr>
<th>Step</th>
<th>Binary exponent</th>
<th>Op</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$x = x$</td>
<td></td>
<td>$\text{Initial setting, } h_4 \text{ processed}$</td>
</tr>
<tr>
<td>1a</td>
<td>$(x^1)^2 = x^2$</td>
<td>SQ</td>
<td>$\text{Processing } h_4$</td>
</tr>
<tr>
<td>1b</td>
<td>$x^2 \cdot x = x^3$</td>
<td>MUL</td>
<td>$h_3 = 1$</td>
</tr>
<tr>
<td>2a</td>
<td>$(x^3)^2 = x^6$</td>
<td>SQ</td>
<td>$\text{Processing } h_2$</td>
</tr>
<tr>
<td>2b</td>
<td>-</td>
<td></td>
<td>$h_0 = 0$</td>
</tr>
<tr>
<td>3a</td>
<td>$(x^6)^2 = x^{12}$</td>
<td>SQ</td>
<td>$\text{Processing } h_1$</td>
</tr>
<tr>
<td>3b</td>
<td>$x^{12} \cdot x = x^{13}$</td>
<td>MUL</td>
<td>$h_1 = 1$</td>
</tr>
<tr>
<td>4a</td>
<td>$(x^{13})^2 = x^{26}$</td>
<td>SQ</td>
<td>$\text{Processing } h_0$</td>
</tr>
<tr>
<td>4b</td>
<td>-</td>
<td></td>
<td>$h_0 = 0$</td>
</tr>
</tbody>
</table>

- Observe how the exponent evolves into $x^{26} = x^{11010}$
- 6 operations instead of 25 multiplications
Complexity of Square-and-Multiply Alg.

- The square-and-multiply algorithm has a logarithmic complexity, i.e., its run time is proportional to the bit length (rather than the absolute value) of the exponent.
- Given an exponent with $t+1$ bits $H = (h_t, h_{t-1}, \ldots, h_0)_2$ with $h_t = 1$, we need the following operations:
 - # Squarings $= t$
 - Average # multiplications $= 0.5 t$
 - Total complexity: $#SQ + #MUL = 1.5 t$
- Exponents are often randomly chosen, so $1.5 t$ is a good estimate for the average number of operations.
- Note that each squaring and each multiplication is an operation with very long numbers, e.g., 2048 bit integers.

Speed-Up Techniques

- Modular exponentiation is computationally intensive.
- Even with the square-and-multiply algorithm, RSA can be quite slow on constrained devices.
- Some important tricks:
 - Short public exponent e
 - Chinese Remainder Theorem (CRT)
 - Exponentiation with pre-computation (not covered here)
Fast encryption with small public exponent

- Choosing a small public exponent e does not weaken the security of RSA
- A small public exponent improves the speed of the RSA encryption significantly

<table>
<thead>
<tr>
<th>Public Key</th>
<th>e as binary string</th>
<th>#MUL + #SQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^{1+1} = 3$</td>
<td>$(11)_2$</td>
<td>1 + 1 = 2</td>
</tr>
<tr>
<td>$2^{4+1} = 17$</td>
<td>$(1 0001)_2$</td>
<td>4 + 1 = 5</td>
</tr>
<tr>
<td>$2^{16} + 1$</td>
<td>$(1 0000 0000 0000 0001)_2$</td>
<td>16 + 1 = 17</td>
</tr>
</tbody>
</table>

- Small Hamming weight
- Commonly used trick (e.g., SSL/TLS, etc.): makes RSA the fastest asymmetric scheme with regard to encryption

Fast decryption with CRT

- Choosing a small private key d results in security weakness
 - In fact, d must have at least $0.3t$ bits, where t is the bit length of the modulus n
- However, the Chinese Remainder Theorem (CRT) can be used to accelerate exponentiation with the private key d
- Based on the CRT we can replace the computation of $x^d \mod \Phi(n) \mod n$

by two computations

$x^d \mod (p-1) \mod p$ and $x^d \mod (q-1) \mod q$

where q and p are „small” compared to $n"
Basic principle of CRT-based exponentiation

- CRT-based exponentiation involves three distinct steps
 1. Transformation of operand into the CRT domain
 2. Modular exponentiation in the CRT domain
 3. Inverse transformation into the problem domain

These steps are equivalent to one modular exponentiation in the problem domain.

CRT: Step 1 - Transformation

- Transformation into the CRT domain requires the knowledge of \(p \) and \(q \)
- \(p \) and \(q \) are only known to the owner of the private key, hence CRT cannot be applied to speed up encryption
- The transformation computes \((x_p, x_q)\) which is the representation of \(x \) in the CRT domain. They can be found easily by computing
 \(x_p \equiv x \mod p \) and \(x_q \equiv x \mod q \)
CRT: Step 2 - Exponentiation

• Given \(d_p\) and \(d_q\) such that
 \[
d_p \equiv d \mod (p-1) \quad \text{and} \quad d_q \equiv d \mod (q-1)
 \]
one exponentiation in the problem domain requires two
exponentiations in the CRT domain
 \[
y_p \equiv x_p^{d_p} \mod p \quad \text{and} \quad y_q \equiv x_q^{d_q} \mod q
 \]
• In practice, \(p\) and \(q\) are chosen to have half the bit length
 of \(n\), i.e., \(|p| \approx |q| \approx |n|/2\)

CRT: Step 3 - Inverse Transformation

• Inverse transformation requires modular inversion twice,
 which is computationally expensive
 \[
c_p \equiv q^{-1} \mod p \quad \text{and} \quad c_q \equiv p^{-1} \mod q
 \]
• Inverse transformation assembles \(y_p\), \(y_q\) to the final result \(y \mod n\) in the problem domain
 \[
y \equiv [q \times c_p] \times y_p + [p \times c_q] \times y_q \mod n
 \]
 \[
y \equiv [q \times q^{-1} \mod p] \times y_p + [p \times p^{-1} \mod q] \times y_q \mod n
 \]
• The primes \(p\) and \(q\) typically change infrequently, therefore
 the cost of inversion can be neglected because the two
 expressions
 \[
 [q \times c_p] \text{ and } [p \times c_q]
 \]
can be precomputed and stored
Example

\(p = 13, \quad q = 11, \quad n = pq = 143; \quad \Phi(n) = (p-1)(q-1) = 120 = 8 \cdot 3 \cdot 5 \)

Select \(e = 77 \) as \(\gcd(77, 120) = 1; \quad d = 53 \mod 120 \) as \(77 \cdot 53 = 1 \mod 120 \)

Encryption: Given \(x = 101 \) then \(y = x^e = 101^{77} = 101^{100101} = (((101^2)^2 101)^2 101)^2 101 \mod 143 = 95 \mod 143 \)

Decryption:

\[
\begin{align*}
 x_p &= y^{d \mod (p-1)} \mod p = 95^{53 \mod 12} \mod 13 = 4^5 \mod 13 = 10 \mod 13 \\
 x_q &= y^{d \mod (q-1)} \mod q = 95^{53 \mod 10} \mod 11 = 7^7 \mod 11 = 2 \mod 11 \\

e_p &\equiv q^{-1} \mod p \equiv 11^{-1} \mod 13 = 6 \mod 13 \quad \text{since} \quad 11 \cdot 6 = 1 \mod 13 \\
e_q &\equiv p^{-1} \mod q \equiv 13^{-1} \mod 11 = 6 \mod 11 \quad \text{since} \quad 13 \cdot 6 = 1 \mod 11 \\
x &= 11 \cdot 6 \cdot 10 + 13 \cdot 6 \cdot 2 = 66 \cdot 10 + 78 \cdot 2 \mod 143 = 88 + 13 \mod 143 = 101
\end{align*}
\]

Complexity of CRT

- We ignore the transformation and inverse transformation steps since their costs can be neglected under reasonable assumptions
- Assuming that \(n \) has \(t+1 \) bits, \(p \) and \(q \) are about \(t/2 \) bits long
- The complexity is determined by the two exponentiations (using the square-and-multiply algorithm) in the CRT domain. The operands are only \(t/2 \) bits long:
 - # squarings (one exp.): \(\#SQ = 0.5t \)
 - # aver. multiplications (one exp.): \(\#MUL = 0.25t \)
 - Total complexity: \(2 \times (\#MUL + \#SQ) = 1.5t \)
- This looks the same as regular exponentiations, but since the operands have half the bit length compared to regular exponent, each operation (i.e., multiplying and squaring) is 4 times faster
- Hence CRT is 4 times faster than straightforward exponentiation
Finding Large Primes

- Generating keys for RSA requires finding two large primes p and q such that $n = p \times q$ is sufficiently large.
- Size of p and q is typically half the desired size of n.
- To find primes, random integers are generated and tested for primality:

```
RNG \[ \rightarrow \begin{array}{c}
p' \text{ candidate prime} \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{Primality Test} \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{"p' is prime" OR "p' is composite"} \\
\end{array}
```

- The random number generator (RNG) should be non-predictable otherwise an attacker could guess the factorization of n.

Primality Tests

- Factoring p and q to test for primality is hard.
- However, we are not interested in the factorization, we only want to know whether p and q are composite.
- Typical primality tests are probabilistic, i.e., they are not 100% accurate but their output is correct with very high probability.
- A probabilistic test has two outputs:
 - "p' is composite" – always true
 - "p' is a prime" – only true with a certain probability
- Among the well-known primality tests are the following:
 - Fermat Primality-Test
 - Miller-Rabin Primality-Test
Fermat Primality-Test

• Basic idea: Fermat's Little Theorem holds for all primes, i.e., if a number \(p' \) is found for which \(a^{p'-1} \equiv 1 \mod p' \), it is not a prime.

Input: Prime candidate \(p' \), security parameter \(s \)
Output: \(p' \) is composite or is likely a prime

1. FOR \(i = 1 \) TO \(s \)
2. choose random \(a \in \{2,3, ..., p'-2\} \)
3. IF \(a^{p'-1} \not\equiv 1 \mod p' \) THEN
4. RETURN "\(p' \) is composite"
5. RETURN "\(p' \) is likely a prime"

• For certain numbers ("Carmichael numbers") this test often returns "\(p \) is likely a prime" - although they are composite

• Therefore, the Miller-Rabin Test is preferred

• Example: \(561 = 3 \cdot 11 \cdot 17 \); \(a^{560} \equiv 1 \mod 561 \) for all gcd\((a,561)=1\)

Theorem for Miller-Rabin's test

• The more powerful Miller-Rabin Test is based on the following theorem

Theorem: Given the decomposition of an odd prime candidate \(p' \)

\[p' - 1 = 2^u r \]

where \(r \) is odd. If we can find an integer \(a \) such that

\[a^r \not\equiv 1 \mod p' \] and \[a^{2j} \not\equiv p' - 1 \mod p' \]

For all \(j = \{0,1, ..., u-1\} \), then \(p' \) is composite.

Otherwise it is probably a prime.

• This theorem can be turned into an algorithm
Miller-Rabin Primality-Test

Input: Prime candidate \(p' \) with \(p'-1 = 2^r \cdot s \) and security parameter \(s \)

Output: \(p' \) is composite or \(p' \) is likely a prime

FOR \(i = 1 \) TO \(s \)

choose random \(a \in \{2, 3, \ldots, p'-2\} \)

\(z \equiv a^{r \cdot s} \mod p' \)

IF \(z \neq 1 \) AND \(z \neq p'-1 \) THEN

FOR \(j = 1 \) TO \(u-1 \)

\(z \equiv z^2 \mod p' \)

IF \(z = 1 \) THEN

RETURN \(p' \) is composite

IF \(z \neq p'-1 \) THEN

RETURN \(p' \) is composite

RETURN \(p' \) is likely a prime

Attacks and Countermeasures

- There are two distinct types of attacks on cryptosystems
 - **Analytical attacks** try to break the mathematical structure of the underlying problem of RSA
 - **Implementation attacks** try to attack a real-world implementation by exploiting inherent weaknesses in the way RSA is realized in software or hardware

Analytical Attacks: (1) Mathematical attacks

- The best known attack is factoring of \(n \) to obtain \(\phi(n) \)
- Can be prevented using a sufficiently large \(n \) - current factoring record is 664 bits. Thus, \(n \) should have between 1024 and 3072 bits
Analytical Attacks

(2) Protocol attacks

- Exploit the malleability of RSA, e.g., a ciphertext can be modified without knowing the private key - Oscar can replace ciphertext y by y⋅s^e with an integer s resulting in the decrypted message x⋅s
- RSA is deterministic: identical plaintexts ⇒ same ciphertext
- x=0,1,-1 produce y=0,1,-1
- Can be prevented by proper padding (using random numbers)
- Standard padding: Optimal Asymmetric Encryption Padding (OAEP)
 - Force all messages to be encrypted to have the maximum length, i.e., k bytes where k is the length of the modulus n in bytes
 - Include a random byte string

Optimal Asymmetric Encryption Padding

- Hash(L) | zero bytes | 01 | M
 where L = optional message label
- Hash(L) has a fixed length
- G expands the bits of the random number to the required number
- Decode:
 - Recover r=Y ⊕ H(x)
 - Data = X ⊕ G(r)
Implementation Attacks

• Implementation attacks can be one of the following
 • Side-channel analysis:
 • Exploit physical leakage of RSA implementation (e.g., power consumption, EM emanation, etc.)
 • Fault-injection attacks:
 • Inducing faults in the device while CRT is executed can lead to a complete leakage of the private key

Lessons Learned

• RSA is still the most widely used public-key cryptosystem
• RSA is mainly used for key transport and digital signatures
• The public key \(e \) can be a short integer, the private key \(d \) needs to have almost the full length of the modulus \(n \)
• RSA relies on the fact that it is hard to factorize \(n \)
• Currently 1024-bit cannot be factored, but progress in factorization could bring this into reach within 10-15 years. Hence, RSA with a 2048 or 3076 bit modulus should be used for long-term security
• A naive implementation of RSA allows several attacks, and in practice RSA should be used together with padding