Content of this part

♦ Overview of the AES algorithm
♦ Galois Fields
♦ Internal structure of AES
 • Byte Substitution layer
 • Diffusion layer
 • Key Addition layer
 • Key schedule
♦ Decryption
♦ Practical issues
Some Basic Facts

- AES is the most widely used symmetric cipher today

- The algorithm for AES was chosen by the US National Institute of Standards and Technology (NIST) in a multi-year selection process

- The requirements for all AES candidate submissions were:
 - Block cipher with 128-bit block size
 - Three supported key lengths: 128, 192 and 256 bit
 - Security relative to other submitted algorithms
 - Efficiency in software and hardware

Chronology of the AES Selection

- The need for a new block cipher announced by NIST in January, 1997
- 15 candidates algorithms accepted in August, 1998
- 5 finalists announced in August, 1999:
 - Mars - IBM Corporation
 - RC6 - RSA Laboratories
 - Rijndael - J. Daemen & V. Rijmen
 - Serpent - E. Biham et al.
 - Twofish - B. Schneier et al.
- In October 2000, Rijndael was chosen as the AES
- AES was formally approved as a US federal standard in November 2001
AES: Overview

The number of rounds depends on the chosen key length:

<table>
<thead>
<tr>
<th>Key length (bits)</th>
<th>Number of rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>10</td>
</tr>
<tr>
<td>192</td>
<td>12</td>
</tr>
<tr>
<td>256</td>
<td>14</td>
</tr>
</tbody>
</table>

AES: Overview

- Iterated cipher with 10/12/14 rounds for key length of 128, 192, 256 bits, respectively (Nr+1 round keys)
- Each round consists of “Layers”

Number of iterations depends on key size
Internal Structure of AES

- AES is a byte-oriented cipher
- The state A (i.e., the 128-bit data path) can be arranged in a 4×4 matrix:

$$
\begin{array}{cccc}
A_0 & A_4 & A_8 & A_{12} \\
A_1 & A_5 & A_9 & A_{13} \\
A_2 & A_6 & A_{10} & A_{14} \\
A_3 & A_7 & A_{11} & A_{15}
\end{array}
\begin{array}{cccc}
S_{00} & S_{01} & S_{02} & S_{03} \\
S_{10} & S_{11} & S_{12} & S_{13} \\
S_{20} & S_{21} & S_{22} & S_{23} \\
S_{30} & S_{31} & S_{32} & S_{33}
\end{array}
$$

with A_0, \ldots, A_{15} denoting the 16-byte input of AES

Internal Structure of AES

- Round function for rounds $1, 2, \ldots, N_r - 1$:

- Byte Substitution
- ShiftRows
- MixColumns
- Key Addition

- Note: In the last round, the MixColumn transformation is omitted
Byte Substitution Layer

- The Byte Substitution layer consists of 16 S-Boxes with the following properties:
 - The S-Boxes are identical,
 - the only nonlinear elements of AES, i.e., $\text{ByteSub}(A_i) + \text{ByteSub}(A_j) \neq \text{ByteSub}(A_i + A_j)$, for $i,j = 0,\ldots,15$,
 - bijective, i.e., there exists a one-to-one mapping of input and output bytes \Rightarrow S-Box can be uniquely reversed.

- In software implementations, the S-Box is usually realized as a lookup table.

Diffusion Layer

- The Diffusion layer
 - provides diffusion over all input state bits
 - consists of two sublayers:
 - **ShiftRows Sublayer**: Permutation of the data on a byte level
 - **MixColumn Sublayer**: Matrix operation which combines ("mixes") blocks of four bytes

- performs a linear operation on state matrices A, B, i.e.,

 $\text{DIFF}(A) + \text{DIFF}(B) = \text{DIFF}(A + B)$
ShiftRows Sublayer

- Rows of the state matrix are shifted cyclically:

<table>
<thead>
<tr>
<th>Input matrix</th>
<th>Output matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_0 B_4 B_8 B_{12}</td>
<td>B_5 B_9 B_{13} B_1</td>
</tr>
<tr>
<td>B_1 B_5 B_9 B_{13}</td>
<td>B_{10} B_{14} B_2 B_6</td>
</tr>
<tr>
<td>B_2 B_6 B_{10} B_{14}</td>
<td>B_{15} B_3 B_7 B_{11}</td>
</tr>
</tbody>
</table>

Introduction to Galois Fields

- Substitution & Mix-column steps based on Galois field arithmetic
- A Galois field consists of a finite set of elements with the operation: add, subtract, multiply and invert
- A **group** is a set of elements with one operation that is **closed** and **associative**, the set has a neutral (identity) element „1“ and each element a has an inverse so that $a \circ a^{-1} = 1$ and $a \circ 1 = a$
- A group is **commutative** if the operation is commutative.
- The set $\{0,1,\ldots,m-1\}$ with the addition mod m is a group but this set with the operation multiply mod m is not.
- A **field** is a set of elements that form an additive group with the operation $+$ and a multiplicative group (except 0) with the operation \times, and the **distributivity** rule holds.
- A **finite field** of order m has $m = p^n$ elements with p a prime number.
- For $n=1$ the field $GF(p)$ consists of the integers $0,1,\ldots,p-1$ and add/multiply mod p - all non-zero elements have an inverse special case of a ring.
Galois Fields

- \(GF(5) \): multiplicative inverses for 0, 1, 2, 3, 4 are: none, 1, 3, 2, 4
- \(GF(2) \) and its extension field \(GF(2^8) \) are important for AES
 - AES operates on bytes that have 256 possible values
 - But \(2^8 \) is not a prime and we cannot use add/multiply mod \(2^8 \) (why)

- Define the extension field \(GF(2^8) \) as consisting of 256 polynomials

 \[
 A(x) = a_7x^7 + \cdots + a_1x + a_0, \quad a_i \in GF(2) = \{0, 1\}
 \]

 \[
 A = (a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0)
 \]

- \(GF(2^m) \):

 \[
 C(x) = A(x) + B(x) = \sum_{i=0}^{m-1} c_ix^i, \quad c_i \equiv a_i + b_i \mod 2
 \]

 \[
 C(x) = A(x) - B(x) = \sum_{i=0}^{m-1} c_ix^i, \quad c_i \equiv a_i - b_i \equiv a_i + b_i \mod 2.
 \]

- Example: \(A=(1101 0011) \) + \(B=(0101 1010) \) in binary and polynomial notation

Extension Field

- Multiplication would generate a polynomial of degree \(2m \) - we divide the product by a given polynomial and use the remainder
 - The modulo reduction should use an irreducible polynomial

- Define multiplication in \(GF(2^m) \) as:

 \[
 C(x) \equiv A(x) \cdot B(x) \mod P(x).
 \]

- For AES \(P(x) = x^8 + x^4 + x^3 + x + 1 \)

- Example \(A=(0010 0010) \), \(B=(0001 0101) \) \(\Rightarrow C(1011 1100) \)
Inversion

- Basic operation (but not the only one) behind the substitution step in AES
- Definition: $A^{-1}(x) \cdot A(x) = 1 \mod P(x)$
- For small fields commonly done using lookup tables
- Example: Inverse of $A=(0010 0010)=(22)_{16}$ is $(5A)_{16}$

$$P(x) = x^8 + x^4 + x^3 + x + 1$$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
<td>0D</td>
<td>F6</td>
<td>CB</td>
<td>52</td>
<td>7B</td>
<td>D1</td>
<td>E8</td>
<td>4F</td>
<td>29</td>
<td>C0</td>
<td>B0</td>
<td>E0</td>
<td>E5</td>
<td>C7</td>
</tr>
<tr>
<td>1</td>
<td>74</td>
<td>B4</td>
<td>AA</td>
<td>4B</td>
<td>99</td>
<td>2B</td>
<td>60</td>
<td>5F</td>
<td>58</td>
<td>3F</td>
<td>FD</td>
<td>CC</td>
<td>FF</td>
<td>40</td>
<td>EE</td>
<td>B2</td>
</tr>
<tr>
<td>2</td>
<td>1A</td>
<td>6B</td>
<td>46</td>
<td>D5</td>
<td>41</td>
<td>44</td>
<td>A2</td>
<td>C2</td>
<td>3C</td>
<td>45</td>
<td>92</td>
<td>6C</td>
<td>F3</td>
<td>39</td>
<td>66</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>2E</td>
<td>4A</td>
<td>77</td>
<td>82</td>
<td>F7</td>
<td>8E</td>
<td>77</td>
<td>BB</td>
<td>59</td>
<td>19</td>
<td>1D</td>
<td>FE</td>
<td>37</td>
<td>67</td>
<td>2D</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td>SC</td>
<td>05</td>
<td>A4</td>
<td>4C</td>
<td>24</td>
<td>87</td>
<td>BF</td>
<td>18</td>
<td>3B</td>
<td>22</td>
<td>F0</td>
<td>51</td>
<td>EC</td>
<td>61</td>
<td>F7</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>5B</td>
<td>AF</td>
<td>D3</td>
<td>A9</td>
<td>36</td>
<td>43</td>
<td>F4</td>
<td>47</td>
<td>91</td>
<td>DF</td>
<td>33</td>
<td>93</td>
<td>31</td>
<td>3B</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>79</td>
<td>B7</td>
<td>97</td>
<td>85</td>
<td>10</td>
<td>B5</td>
<td>EA</td>
<td>3C</td>
<td>B6</td>
<td>70</td>
<td>D0</td>
<td>0A</td>
<td>FA</td>
<td>81</td>
<td>BF</td>
<td>62</td>
</tr>
<tr>
<td>7</td>
<td>83</td>
<td>72</td>
<td>7A</td>
<td>06</td>
<td>96</td>
<td>73</td>
<td>BB</td>
<td>56</td>
<td>9B</td>
<td>92</td>
<td>95</td>
<td>D7</td>
<td>F7</td>
<td>02</td>
<td>89</td>
<td>A4</td>
</tr>
<tr>
<td>8</td>
<td>DE</td>
<td>6A</td>
<td>32</td>
<td>SD</td>
<td>DB</td>
<td>8A</td>
<td>B4</td>
<td>72</td>
<td>2A</td>
<td>14</td>
<td>9F</td>
<td>88</td>
<td>F9</td>
<td>DC</td>
<td>69</td>
<td>9A</td>
</tr>
<tr>
<td>9</td>
<td>A8</td>
<td>7C</td>
<td>2E</td>
<td>C3</td>
<td>8F</td>
<td>B8</td>
<td>65</td>
<td>48</td>
<td>26</td>
<td>38</td>
<td>12</td>
<td>4A</td>
<td>CE</td>
<td>37</td>
<td>D2</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>B8</td>
<td>0C</td>
<td>E0</td>
<td>1F</td>
<td>EF</td>
<td>11</td>
<td>75</td>
<td>78</td>
<td>71</td>
<td>A5</td>
<td>8X</td>
<td>76</td>
<td>3D</td>
<td>BD</td>
<td>EC</td>
<td>67</td>
</tr>
<tr>
<td>11</td>
<td>CD</td>
<td>0B</td>
<td>28</td>
<td>2F</td>
<td>A3</td>
<td>DA</td>
<td>E4</td>
<td>D6</td>
<td>0F</td>
<td>A9</td>
<td>27</td>
<td>53</td>
<td>64</td>
<td>1B</td>
<td>FC</td>
<td>AE</td>
</tr>
<tr>
<td>12</td>
<td>DB</td>
<td>37</td>
<td>56</td>
<td>D3</td>
<td>DB</td>
<td>E2</td>
<td>EA</td>
<td>94</td>
<td>8C</td>
<td>9E</td>
<td>74</td>
<td>F7</td>
<td>04</td>
<td>8B</td>
<td>BD</td>
<td>9B</td>
</tr>
<tr>
<td>13</td>
<td>E8</td>
<td>B1</td>
<td>0D</td>
<td>D6</td>
<td>EB</td>
<td>C6</td>
<td>0E</td>
<td>CF</td>
<td>AD</td>
<td>08</td>
<td>4E</td>
<td>D7</td>
<td>E3</td>
<td>5D</td>
<td>50</td>
<td>1E</td>
</tr>
<tr>
<td>14</td>
<td>BF</td>
<td>23</td>
<td>38</td>
<td>34</td>
<td>68</td>
<td>46</td>
<td>03</td>
<td>SC</td>
<td>DD</td>
<td>9C</td>
<td>7D</td>
<td>A0</td>
<td>CD</td>
<td>1A</td>
<td>41</td>
<td>1C</td>
</tr>
</tbody>
</table>

Substitution step

- Inverse: $B'_i = A^{-1}_i$
- Multiply by a constant matrix and add a constant
- Typically replaced by a table lookup

Example:

From previous slide:

$A_1 = (11000010)_2 = (C2)_{hex}$

$A_1^{-1} = B'_i = (2F)_{hex} = (00101111)_2$

$B_1 = (00100101) = (25)_{hex}$
MixColumn Sub-layer

- Linear transformation which mixes each column of the state matrix

- Each 4-byte column is considered as a vector and multiplied by a fixed 4x4 matrix, e.g.,

\[
\begin{pmatrix}
C_0 \\
C_1 \\
C_2 \\
C_3 \\
\end{pmatrix} =
\begin{pmatrix}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02 \\
\end{pmatrix}
\begin{pmatrix}
B_0 \\
B_5 \\
B_0 \\
B_15 \\
\end{pmatrix}
\]

where 01, 02 and 03 are given in hexadecimal notation

- All arithmetic is done in the Galois field \(GF(2^8) \)

MixColumn Sublayer

- **MixColumns:** \(\alpha = x = 02_{16} \), \(\beta = x + 1 = 03_{16} \), \(\otimes \) and \(\oplus \) are mod 2 multiply and add; both modulo AES generator polynomial \(P(x) = x^8 + x^4 + x^3 + x + 1 \)

Example: \(03 \otimes 5d = e7 \equiv (x+1) \oplus (x^6 + x^4 + x^3 + x^2 + 1) \)

Example: \(02 \otimes bf = 17e \mod P(x) = 65 \equiv f(x) = (x) \otimes (x^7 + x^5 + x^4 + x^3 + x^2 + x + 1) \)

If \(f(x) \) is of degree 8:

\[
f(x) \mod (x^8 + x^4 + x^3 + x + 1) = f(x) \oplus P(x)
\]
Key Addition Layer

♦ Inputs:
 • 16-byte state matrix S
 • 16-byte subkey k_i
♦ Output: $S \oplus k_i$
♦ The subkeys are generated in the key schedule

\[
\begin{array}{cccc}
S_{00} & S_{01} & S_{02} & S_{03} \\
S_{10} & S_{11} & S_{12} & S_{13} \\
S_{20} & S_{21} & S_{22} & S_{23} \\
S_{30} & S_{31} & S_{32} & S_{33}
\end{array}
\begin{array}{cccc}
k_{00} & k_{01} & k_{02} & k_{03} \\
k_{10} & k_{11} & k_{12} & k_{13} \\
k_{20} & k_{21} & k_{22} & k_{23} \\
k_{30} & k_{31} & k_{32} & k_{33}
\end{array}
\]

Key Schedule

♦ Subkeys are derived recursively from the original 128/192/256-bit input key
♦ Each round has 1 subkey, plus 1 subkey at the beginning of AES

<table>
<thead>
<tr>
<th>Key length (bits)</th>
<th>Number of subkeys</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>11</td>
</tr>
<tr>
<td>192</td>
<td>13</td>
</tr>
<tr>
<td>256</td>
<td>15</td>
</tr>
</tbody>
</table>

♦ Key whitening: Subkey is used both at the input and output of AES
 \[\Rightarrow \# \text{ subkeys} = \# \text{ rounds} + 1 \]
♦ There are different key schedules for the different key sizes
Key Schedule

Example: Key schedule for 128-bit key AES

- Word-oriented: 1 word = 4 bytes = 32 bits
- 11 subkeys are stored in $W[0]..W[3], W[4]..W[7], \ldots, W[40]..W[43]$
- First subkey $W[0]..W[3]$ is the original AES key

$$W[4i] = W[4(i-1)] + g(W[4i-1])$$

Key Schedule

- Function g rotates its four input bytes and performs a byte-wise S-Box substitution ⇒ non-linearity
- Round coefficient RC is only added to leftmost byte and varies from round to round:

 $RC[1] = x^0 = (00000001)_2$
 $RC[2] = x^1 = (00000010)_2$
 $RC[3] = x^2 = (00000100)_2$

 \[\cdots \]
 $RC[10] = x^9 = (00110110)_2$

\times represents an element in a Galois field $GF(2^8)$
AES key Schedule

KeyExpansion(byte key[4 * Nk], word w[4 * (Nr + 1)], Nk)
begin
 word temp
 i = 0
 while (i < Nk)
 w[i] = word(key[4 * i], key[4 * i + 1], key[4 * i + 2], key[4 * i + 3])
 i = i + 1
 end while
 i = Nk
 while (i < 4 * (Nr + 1))
 temp = w[i - 1]
 if (i mod Nk = 0)
 temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
 else if (Nk > 6 and i mod Nk = 4)
 temp = SubWord(temp)
 end if
 w[i] = w[i - Nk] xor temp
 i = i + 1
 end while
end

Example

Plaintext = 32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34
128-bit key = 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

MixColumns:

| s_{0,0} = (\alpha \otimes s_{0,0}) \oplus (\beta \otimes s_{1,0}) \oplus s_{2,0} \oplus s_{3,0} |
| s_{1,0} = s_{0,0} \oplus (\alpha \otimes s_{1,0}) \oplus (\beta \otimes s_{2,0}) \oplus s_{3,0} |
| d 4 \oplus (02 \otimes bf) \oplus (03 \otimes 5d) \oplus 03 = d 4 \oplus 17e \oplus e7 \oplus 30 = 17d |

17d mod p(x) = 17d \oplus p(x) = 7d \oplus (x^4 + x^3 + x + 1) = 7d \oplus 1b = 66
Effect of bit flips

- Plaintext: 32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34
- 128-bit key: 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c
- Ciphertext: 39 25 84 1d 02 dc 09 fb dc 11 85 97 19 6a 0b 32
- A single bit flip in the plaintext: 30 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34
- Results in the ciphertext: c0 06 27 d1 8b d9 e1 19 d5 17 6d bc ba 73 37 c1
- A single bit flip in the key: 2a 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c
- Results in the ciphertext: c4 61 97 9e e4 4d e9 7a ba 52 34 8b 39 9d 7f 84
- A single bit flip results in a totally scrambled output

Decryption

- AES is not based on a Feistel network
 ⇒ All layers must be inverted for decryption:
 - MixColumn layer \rightarrow Inv MixColumn layer
 - ShiftRows layer \rightarrow Inv ShiftRows layer
 - Byte Substitution layer \rightarrow Inv Byte Substitution layer
 - Key Addition layer is its own inverse
Decryption - Inv Mixcolumn

Inv MixColumn layer:

To reverse the MixColumn operation, each column of the state matrix C must be multiplied with the inverse of the 4×4 matrix, e.g.,

$$
\begin{bmatrix}
B_0 \\
B_1 \\
B_2 \\
B_3
\end{bmatrix} =
\begin{bmatrix}
0E & 0B & 0D & 09 \\
09 & 0E & 0B & 0D \\
0D & 09 & 0E & 0B \\
0B & 0D & 09 & 0E
\end{bmatrix}
\begin{bmatrix}
C_0 \\
C_1 \\
C_2 \\
C_3
\end{bmatrix}
=
\begin{bmatrix}
0E & 0B & 0D & 09 \\
09 & 0E & 0B & 0D \\
0D & 09 & 0E & 0B \\
0B & 0D & 09 & 0E
\end{bmatrix}
\begin{bmatrix}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{bmatrix}
$$

where 09, $0B$, $0D$ and $0E$ are given in hexadecimal notation

All arithmetic done in the Galois field $GF(2^8)$
Decryption – Inv Shift Rows

Inv ShiftRows layer:
- All rows of the state matrix B are shifted to the opposite direction:

<table>
<thead>
<tr>
<th>Input matrix</th>
<th>Output matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_0</td>
<td>B_4</td>
</tr>
<tr>
<td>B_1</td>
<td>B_5</td>
</tr>
<tr>
<td>B_2</td>
<td>B_6</td>
</tr>
<tr>
<td>B_3</td>
<td>B_7</td>
</tr>
</tbody>
</table>

- B_0 no shift
- B_1 one position right rotate
- B_2 two positions right rotate
- B_3 three positions right rotate

Decryption – Inv S-Box

Inv Byte Substitution layer:
- Since the S-Box is bijective, it is possible to construct an inverse, such that

$$A_i = S^{-1}(B) = S^{-1}(S(A_i))$$

⇒ The inverse S-Box is used for decryption. It is usually realized as a lookup table

Decryption key schedule:
- Subkeys are needed in reversed order (compared to encryption)
- In practice, for encryption and decryption, the same key schedule is used. This requires that all subkeys must be computed before the encryption of the first block can begin
Implementation in Software

♦ One requirement of AES was the possibility of an efficient software implementation
♦ Straightforward implementation is well suited for 8-bit processors (e.g., smart cards), but inefficient on 32-bit or 64-bit processors
♦ A more sophisticated approach: Merge all round functions (except the key addition) into one table look-up
 • This results in four tables with 256 entries, where each entry is 32 bits wide
 • One round can be computed with 16 table look-ups
♦ Typical SW speeds are more than 1.6 Gbit/s on modern 64-bit processors

Security

♦ Brute-force attack: Due to the key length of 128, 192 or 256 bits, a brute-force attack is not possible

♦ Analytical attacks: There is no efficient analytical attack known that is sufficiently better than brute-force (e.g., complexity of 2^{126})

♦ Side-channel attacks:
 • Many side-channel attacks have been published
 • Note that side-channel attacks do not attack the underlying algorithm but the implementation of it
Lessons Learned

♦ AES is a block cipher which supports three key lengths of 128, 192 and 256 bit. It provides excellent long-term security against brute-force attacks.

♦ AES has been studied intensively since the late 1990s and no attacks have been found that are better than brute-force.

♦ AES is not based on Feistel networks. Its basic operations use Galois field arithmetic and provide strong diffusion and confusion.

♦ AES is part of numerous open standards such as Ipsec (Internet Protocol Security) or TLS (Transport Layer Security), in addition to being the mandatory encryption algorithm for US government applications. It is likely to be the dominant encryption algorithm for many years to come.

♦ AES is efficient in software and hardware.