
Adapted from Computer Organization and Design, Patterson & Hennessy, UCB

ECE232: Hardware Organization and Design

Part 15: Cache

Chapter 5 (4th edition), 7 (3rd edition)

http://www.ecs.umass.edu/ece/ece232/

ECE232: Cache 2 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Cache addressing

� How do you know if something
is in the cache? (Q1)

� If it is in the cache, how to
find it? (Q2)

� Traditional Memory

• Given an address, provide
the data (has address
decoder)

� Associative Memory

• AKA “Content Addressable
Memory”

• Each line contain the
address (or part of it) and
the data

Memory

CacheTo Processor

From Processor

Block X

Block Y

Block X

Full/MSBs of Address
Data

Tag

ECE232: Cache 3 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Cache Organization

� Fully-associative: any memory
location can be stored
anywhere in the cache

• Cache location and memory
address are unrelated

� Direct-mapped: each memory
location maps onto exactly one
cache entry

• Some of the memory address
bit are used to index the cache

� N-way set-associative: each
memory location can go into
one of N sets

Full Address

Data

MSBs of Address

Data

L
S
B
s
of
 A
d
d
re
ss

Tag

Tag

ECE232: Cache 4 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Direct Mapped Cache

� Simplest mapping is a direct mapped cache

� Each memory address is associated with one possible block
within the cache

• Therefore, we only need to look in a single location in the
cache for the data if it exists in the cache

ECE232: Cache 5 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Direct mapped cache (assume 1 byte/Block)

� Cache Block 0 can be
occupied by data from

• Memory blocks
0, 4, 8, 12

� Cache Block 1 can be
occupied by data from

• Memory blocks
1, 5, 9, 13

� Cache Block 2 can be
occupied by data from

• Memory blocks
2, 6, 10, 14

� Cache Block 3 can be
occupied by data from

• Memory blocks
3, 7, 11, 15

4-Block Direct
Mapped CacheMemory

Cache
Index

00002

01002

10002

11002

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

Block
Index

ECE232: Cache 6 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Direct Mapped Cache – Index and Tag

� index determines block in cache

� index = (address) mod (# blocks)

� The number of cache blocks is power

of 2 ⇒⇒⇒⇒ cache index is the lower n bits

of memory address

n = log2(# blocks)

tag index

Memory block

address

Memory

Cache
Index

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3

Block
Index

00 00 2

01 00 2

10 00 2

11 00 2

1 byte

ECE232: Cache 7 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Direct Mapped w/Tag

00 10

01 10

10 10

11 10

� tag determines which memory block

occupies cache block

� tag = most significant bits of address

� hit: cache tag field = tag bits of

address

� miss: tag field ≠≠≠≠ tag bits of address

tag

11

tag

Memory

Cache
Index

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3

Block
Index

index

Memory block

address

ECE232: Cache 8 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Finding Item within Block

� In reality, a cache block consists of a number of bytes/words
to

(1) increase cache hit due to locality property and

(2) reduce the cache miss time

� Mapping: memory block i is mapped to cache block with
index i mod k, where k is the number of blocks in the cache

� Given an address of item, index tells which block of cache to
look in

� Then, how to find requested item within the cache block?

� Or, equivalently, “What is the byte offset of the item within
the cache block?”

ECE232: Cache 9 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Selecting part of a block

� If block size > 1, rightmost bits of index are really the offset
within the indexed block

TAG INDEX OFFSET

Tag to check if have
correct block

Index to select a
block in cache

Byte offset

� Example: Block size of 8 bytes; select 2nd word

tag

11

Cache
Index

0
1
2
3

11 01 100

Memory address

ECE232: Cache 10 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Accessing data in a direct mapped cache

� Three types of events:

� cache hit: cache block is valid and contains proper address,
so read desired word

� cache miss: nothing in cache in appropriate block, so fetch
from memory

� cache miss, block replacement: wrong data is in cache at
appropriate block, so discard it and fetch desired data from
memory

� Cache Access Procedure: (1) Use Index bits to select cache
block (2) If valid bit is 1, compare the tag bits of the address
with the cache block tag bits (3) If they match, use the
offset to read out the word/byte

ECE232: Cache 11 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Data valid, tag OK, so read offset return word d

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0

1

2

3

4

5

6

7

1022

1023

...

1 0 a b c d

000000000000000000 0000000001 1100

Index
0

0

0

0

0

0

0

0

0

1

2
3

ECE232: Cache 12 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

An Example Cache: DecStation 3100

� Commercial Workstation: ~1985

� MIPS R2000 Processor

� Separate instruction and data caches:

• direct mapped

• 64K Bytes (16K words) each

• Block Size: 1 Word (Low Spatial Locality)

Solution:

Increase block size – 2nd example

ECE232: Cache 13 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

16 14

Valid Tag Data

Hit

16 32

16K

entries

16 bits 32 bits

3130 17 16 15 5 4 3 2 1 0

Byte

Offset
Data

Address (showing bit positions)

DecStation 3100 Cache (Block size 1 word)

If miss, cache

controller stalls

the processor,

loads data from

main memory

ECE232: Cache 14 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

16 12 Byte

offset
Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

Address
31 . . . 16 15 . . 4 3 2 1 0

64KB Cache with 4-word (16-byte) blocks

Tag DataV

ECE232: Cache 15 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Fully Associative Cache

00 10 00

01 10 00

10 10 00

11 10 00

tag

1110

Memory

Cache
Index

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3

Block
Index

Memory block

address

1 word

tag offset

0010

1010

0110

ECE232: Cache 16 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Two-way Set Associative Cache

• Two direct-mapped caches operate in parallel

• Cache Index selects a “set” from the cache (set includes 2

blocks)

• The two tags in the set are compared in parallel

• Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01
Sel1 Sel0

Cache Block

Compare
Tag

Compare

OR

Hit

Tag

Set

ECE232: Cache 17 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

4-way Set Associative Cache

� Allow block anywhere in a set

� Advantages:

• Better hit rate

� Disadvantage:

• More tag bits

• More hardware

• Higher access time

A Four-Way Set-Associative Cache,
Block size = 4 bytes

Address

22 8

V TagIndex

0

1

2

253

254

255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

ECE232: Cache 18 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Set Associative Cache - addressing

TAG INDEX/Set # OFFSET

Tag to check if have

correct block anywhere
in set

Index to select a
set in cache

Byte offset

ECE232: Cache 19 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Types of Cache Misses (for 3 organizations)

� Compulsory (cold start): location has never been accessed -
first access to a block not in the cache

� Capacity: since the cache cannot contain all the blocks of a
program, some blocks will be replaced and later retrieved

� Conflict: when too many blocks try to load into the same set,
some blocks will be replaced and later retrieved

ECE232: Cache 20 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Cache Design Decisions

� For a given cache size

• Block (Line) size

• Number of Blocks (Lines)

• How is the cache organized

• Write policy

• Replacement Strategy

� Increase cache size
� More Blocks (Lines)

• More lines == Higher hit rate

• Slower Memory

• As many as practical

ECE232: Cache 21 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Block size

� Miss rate goes down with block size (why?)

� Extreme Example: choose block size = cache size.

• only one block in cache

� Temporal Locality says if an item is accessed, it is likely to
be accessed again soon

• But it is unlikely that it will be accessed again
immediately!!!

• The next access is likely to be a miss

• Continually loading data into the cache but
forced to discard them before they are used again

• Worst nightmare of a cache designer: Ping Pong Effect

ECE232: Cache 22 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Block Size and Miss Penalty

� With increase in block size, the cost of a miss also increases

� Miss penalty: time to fetch the block from the next lower
level of the hierarchy and load it into the cache

� With very large blocks, increase in miss penalty overwhelms
decrease in miss rate

� Can minimize average access time if design memory system
right

ECE232: Cache 23 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Miss Rate Versus Block Size

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
ra

te

64164

Block size (bytes)

1 KB

8 KB

16 KB

64 KB

256 KB

total

cache

size

ECE232: Cache 24 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Block Size Tradeoff

Miss
Penalty

Block Size

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size

Miss
Rate

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Block Size

ECE232: Cache 25 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Writing to the Cache and Block Replacement

� Need to keep cache consistent with memory

• Write to cache & memory simultaneously: “Write-through”

• Or: Write to cache and mark as ‘dirty’

• Need to eventually copy back to memory: “Write-back”

� Need to make space in cache for a new entry

� Which Line Should be ‘Evicted’ (Q3)

• Ideal?: Longest Time Till Next Access

• Least-recently used

• Complicated

• Random selection

• Simple

• Effect on hit rate is relatively small

ECE232: Cache 26 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Replacement Policy

� For direct-mapped cache - easy since only one block is replaced

� For fully-associative and set-associative cache - two strategies:

• Random

• Least-recently used (LRU)—replace the block that has not been
accessed for a long time. (Principle of temporal locality)

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01
Sel1 Sel0

Cache Block

Compare
Tag

Compare

OR

Hit

Tag

Set

R
e
fe

re
n

c
e

ECE232: Cache 27 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Measuring Cache Performance

� CPU time = Execution cycles ×××× clock cycle time =
Instruction_Count ×××× CPI ×××× clock cycle

� If cache miss: (Execution cycles + Memory stall cycles) ××××

clock cycle time

� Memory-stall cycles

= Memory accesses ×××× miss rate ×××× miss penalty

= # instructions ×××× misses/instruction ×××× miss penalty

ECE232: Cache 28 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Example

Question: Cache miss penalty = 50 cycles and all
instructions take 2.0 cycles without memory stalls. Assume
cache miss rate of 2% and 1.33 (why?) memory references
per instruction. What is the impact of cache?

Answer: CPU time= IC ×××× (CPI + Memory stall cycles
/instruction) ×××× cycle time τ

Performance including cache misses is

CPU time = IC ×××× (2.0 + (1.33 ×××× .02 ×××× 50)) ×××× cycle time

= IC ×××× 3.33 ×××× τ

For a perfect cache that never misses CPU time =IC ×××× 2.0 ×××× τ

Hence, including the memory hierarchy stretches CPU time
by 1.67

But, without memory hierarchy, the CPI would increase to

2.0 + 50 x 1.33 or 68.5 – a factor of over 30 times longer

ECE232: Cache 29 Adapted from Computer Organization and Design,Patterson&Hennessy,UCB, Kundu,UMass Koren

Summary: cache organizations

� Direct-mapped: a memory location maps onto exactly one cache entry

� Fully-associative: a memory location can be stored anywhere in cache

� N-way set-associative: each memory location can go into one of n sets

Block #12 placed in a cache
with 8 block frames:

C
a
ch
e

01234567 0 1 2 301234567

M
e
m
or
y

1111111111222222222233

01234567890123456789012345678901

Fully
Associative

Direct Mapped
(12 mod 8)=4

2-Way Assoc
(12 mod 4)=0

Memory

Cache

Block X
Block Y

Block X

P
ro

c
e
s
s
o

r

12

