

Example
Question: Cache miss penalty = 50 cycles and all instructions take 2.0 cycles without memory stalls. Assume cache miss rate of 2% and 1.33 (why?) memory references per instruction. What is the impact of cache? Answer: CPU time= IC × (CPI + Memory stall cycles /instruction) × cycle time τ Performance including cache misses is CPU time = IC × (2.0 + (1.33 × .02 × 50)) × cycle time = IC × 3.33 × τ For a perfect cache that never misses CPU time =IC × 2.0 × τ
Hence, including the memory hierarchy stretches CPU time by 1.67 But, without memory hierarchy, the CPI would increase to $2.0 + 50 \times 1.33$ or $68.5 - a$ factor of over 30 times longer
ECE232: Cache 28 Adapted from Computer Organization and Design, Patterson&Hennessy, UCB, Kundu, UMass Koren

