P
@- UNIVERSITY OF MASSACHUSETTS
Dept. of Electrical & Computer Engineering

Digital Computer Arithmetic
ECE 666

Part 7c
Fast Division - IIT

Israel Koren

ECE666/Koren Part.7c.1 Copyright 2010 Koren

Speeding Up the Division Process

¢ Unlike multiplication - steps of division are serial

¢ Division step consists of selecting quotient digit
and calculating new partial remainder

¢ Two ways to speed up division:

¢ (1) Overlapping full-precision calculation of partial
remainder in step i with selecting quotient digit in
step i+l
* Possible since not all bits of new partial remainder must be
known to select next quotient digit

4 (2) Replacing carry-propagate add/subtract
operation for calculating new partial remainder by
carry-save operation

ECE666/Koren Part.7c.2 Copyright 2010 Koren

Page 1

First Speed-Up Method

¢ Truncated approximation of new partial remainder
calculated in parallel to full-precision calculation of
partial remainder - can be done at high speed

* Quotient digit determined before current step completed

¢ Instead of: (1) Calculate ri-: (with carry propagation) in
step i-1 & (2) input NP most significant bits to PLA to
determine gqi = oD

¢Use a small adder with inputs: |
most significant bits of previous P P ROXIMATE REMAINDER
partial remainder, Bri-z, and most ADDER
significant bits of corresponding —
multiple of divisor, gi-:D = b

¢ Approximate Partial Remainder]lv
(APR) adder PLA

ECE666/Koren Part.7c.3 qi

Approximate Partial Remainder Adder
Bris gD
¢ Produces approximation of NP most v
ii{nifican'r bits of partial remainder, |rrroxmars reuamoer
ri-t, before full-precision add/sub ADPER
operation (ri-1=pri-2-qi-1D) is completed o=
¢ Allows to perform look-ahead selection 1
of Qi in parallel with calculation of ri-:
¢ Size of APR adder determined so that lq
sufficiently accurate Nr bits generated
¢ Uncertainty in result of this adder larger than of
truncated previous partial remainder pri-2 - may
need additional inputs for quotient look-up table

¢ 8-bit APR adder sufficient to generate necessary
inputs to PLA for B=4, a=2

ECE666/Koren Part.7c.4 Copyright 2010 Koren

Page 2

P=4r; 1

Example: o111 T —osn
P-D Plot 011.0
=2 L — 4/3-D
([3':4, (X':Z) 010.1 =
L —
De[1,2) 010.0 - =
. .] —| 2/3-D
* Horizontal lines 001.1
determined to 010 =1 LT
reduce complexity ' L < ‘
of PLA 000.1 — "
Only 3 divisor bits 40, r D
needed as PLA
inputs - most R e T T ..
significant bit of 1o I —— v
divisor always 1 ‘ g=1 I e
* For partial O ~2/3.D
remainder - 5 bits 00 | T] I~
(including sign bit) T~ —
sufficient in most 1011 - -
cases 1010 q= \ —4/3-D
\
ECE666/Koren Part.7c.5 100.1
01.000 01.010 01.100 01110 10.000
Positive r-u.. Remaind/er;
8/3-
¢ 3 cases (a,b,c) when ! = 5/3-D
additional bit required
Case a: D=1.001, . a=2] yap
P=1.1 - single ' b
fractional bit of P 010.0 | — |
insufficient T 23D
4 Divisor can assume 0011 g=1 L
any value from 1.001 e
to 1.010 /// - 1/3-D
¢ Partial remainder can %! ——— a=0
have a value from 1.1 ()¢ D
to 10.0 - range for P/D 01.000 01.010 01.100 01.110 10.000

from 1.1/1.010=1.2 0 10.0/1.001=1.77

¢ First requires q=1, while second requires q=2 /> {

¢ Add 2nd fractional bit to P

* Can select q=1 for P=1.10
and =2 for P=1.11

ECE666/Koren Part.7c.6

(8/3,2/3)

(~8/3,-2/3)

Page 3

Cases b and ¢

P=4r,_,

¢ 8-bit APR adder
may introduce
additional error -
increasing P/D range

¢ Case b: D=1.100,
P=10.0

¢ No APR adder: P/D
range from
10.0/1.101=1.23
to 10.1/1.100=1.66 -
q=1 can be selected

¢ 8-bit APR adder:
introduces error of up
to 2% inri1 -

8/3-D
011.1 5/3.D
011.0 —
' q=2 T 4/3-D
010.1 -
/
010.0 = —
0011 —| 2/3-D
g=1 L
001.0 — S
L] - _11/3.D
000.1 —
¢=0 D
000.0
01.000 01.010 01.100 01.110 10.000

increases to 24 after multiplying by 4
¢ This additional error increases maximum value of P/D from 1.66

to 1.7, requiring q=2

¢ An extra fractional bit of P solves this problem

ECE666/Koren Part.7¢c.7

Copyright 2010 Koren

Negative Partial Remainder

D
¢ Represented 000.0
in two's IRE TR B s e S N
complement [e T -1/3-D
¢6cases -1 1110 T —
or even 2 g=1 T
additional 0.1 = —2/3-D
output bits of R [
APR adder :
required fo T~
guarantee ‘ 5
correct 1010 =2 _— —4/3-D
selection of ’ ~—_|
quotient digit |,
01.000 01.010 01.100 01.110 10.000

ECE666/Koren Part.7c.8

Copyright 2010 Koren

Page 4

Second Speed-Up Method

¢ In first method - time needed for division step
determined by add/subtract for remainder -
quotient digit selected in previous step

¢ Second method avoids time-consuming carry
propagation when calculating remainder

¢ Truncated remainder sufficient for selecting next
quotient digit - no need to complete calculation of
remainder at any intermediate step

¢ Replace carry-propagate adder by carry-save adder

* Partial remainder in a redundant form using 2 sequences of
intermediate sum and carry bits (stored in 2 registers)

¢ Only most significant sum and carry bits must be
assimilated using APR adder to generate approximate
remainder and allow selection of quotient digit

ECE666/Koren Part.7c.9 Copyright 2010 Koren

SRT Divider with Redundant Remainder

¢ Most time consuming - D| X
calculate approximate ! | —
remainder and Diwvisor | Remainder-Carry | Remainder-Sum |

select quotient digit

¢ In each division step:
carry-save adder
calculates remainder,
APR adder accepts most
significant sum and
carry bits of
remainder & generates
required inputs to quotient . ¥
selection PLA | Quotient | | Carry-save Adder

¢ As in first method - number 1 Q

Divisor multiples

| —

of PLA inputs and its entries need
to be calculated, taking into account uncertainty in sum and
carry bits representing truncated remainder

ECE666/Koren Part.7c.10 Copyright 2010 Koren

Page 5

Example
¢ An algorithm for high-speed division with =4, a=2,
D € [1,2) has been implemented

¢ Partial remainder calculated in carry-save manner
resulting in a somewhat more complex design

¢ 8-bit APR adder used to generate most significant
remainder bits - inputs to quotient selection PLA

¢ Inputs to APR adder: 8 most significant sum bits and
carry bits in redundant representation of remainder

¢ Outputs of APR adder converted to a sign-magnitude
representation - only 4 bits of approximate partial
remainder needed in most cases

¢ Additional bit required only in 4 cases - simple PLA

ECE666/Koren Part.7c.11 Copyright 2010 Koren

Further Speed-up of SRT Division

¢ Achieved by increasing radix 3 to 8 or higher
¢ Reduces number of steps to [n/3] or lower
¢ Several radix-8 SRT dividers have been implemented

¢ Main disadvantage: high complexity of PLA - most
time-consuming unit of divider

¢ Avoiding complex PLA - implementing radix-2™ SRT
unit as a set of m overlapping radix-2 SRT stages

4 Radix-2 SRT requires very simple quotient selection
logic - qi € {-1,0,1} solely determined by remainder
- independent of divisor

¢ Must overlap quotient selections for m bits - all m
quotient bits generated in one step

ECE666/Koren Part.7c.12 Copyright 2010 Koren

Page 6

Two Overlapping Radix-2 SRT Stages

' [
most signi- | Remainder-Carry | | Remainder-Sum |
ficant bits T :

¢ Implementing | —_ 0
radix-4 division _ | brl?
¢ All 3 possible values b b | Quul H MUX |
of Qi+1 generated l J, - D|1
using 3 Qsel units - | cs4 CSA b ! '
correspond to 3 T T 1 | C5A |

possible intermediate |le€1 | | [

remainders: Qsel | | Qsel |
J

2ri-1-D, 2ri-1, ' o

2ri-1+D L) MUX D D

¢ Only most significant bits e
—qD

of 3 remainders generated .,

¢ Overall delay: CSA, Qsel, two Mux and final CSA I
¢ May be faster than radix-4 stage - higher CSA |
complexity of radix-4 PLA

ECE666/Koren Part.7c.13 Copyright 2010 Koren

Extending to Radix-8 SRT division

¢ More complex quotient selection circuit - 3 quotient
digits (qi,qi+1,qQi+2) generated in parallel
¢ For Qi-1:
calculate speculative remainders 2ri-1-D,2ri-1,2ri-1+D
¢ For gi-2:
calculate 4ri-1-3D,4ri-1-2D,4ri-1-D,4ri-1,4ri-1+D,
4ri-1+2D,4ri-1+3D
* Only most significant bits of these 7 remainders
¢ 7 Qsel units required with multiplexors (controlled by
Qi and qi+1) to select correct value of Qqi+2

¢ Extend to 4 overlapping radix-2 stages for radix-16
divider: number of Qsel units increases from 11 to 26

4 Another alternative for a radix-16 divider:
2 overlapping radix-4 SRT stages

ECE666/Koren Part.7c.14 Copyright 2010 Koren

Page 7

Array Dividers

¢ All division algorithms can be implemented using arrays:
n rows with n cells per row for radix-2 division

¢ Restoring: each row forms difference between previous
remainder and divisor and generates quotient bit
according to sign of difference

¢ No need to restore remainder if quotient bit=0 -
either previous remainder or difference transferred to
next row

¢ If ripple-carry in every row - n steps to propagate
carry in a single row - total execution time of order n?

¢ Nonrestoring array: same speed as restoring; only
advantage - handle negative operands in a simple way

¢ Final remainder may be incorrect - sign opposite to
dividend

ECE666/Koren Part.7c.15 Copyright 2010 Koren

A Non-restoring Array Divider

If T=0 (1) - addition (subtraction) performed:;
Subtract - add two's complement of divisor (assumed
positive) & forced carry=T

Tin

d;
Ne- - e s
T ! T y
T T

do zo di z1 d2 x2 d3 3

o & do
90 —a—

CAS CAS CAS CAS

1 - CAS CAS CAS CAS
T3
Tout
Controlled add/subtract (CAS) cell
@ - CAS CAS CAS CAS
z6
B - CAS CAS CAS CAS

o T To r3 Copyright 2010 Koren

Page 8

Faster Array Dividers

¢ Previous array dividers - add/subtract with carry-
propagation performed in each row

¢ Nonrestoring:
* Only sign bit of partial remainder needed to select quotient bit
* Can be generated by using fast carry-look-ahead circuit
* Other bits of remainder use carry-save adder

¢ Each cell generates Pi and Gi besides sum and carry

¢Pi and Gi of all cells in a row connected to a carry-
look-ahead circuit to generate quotient bit

¢ Execution time - of order n logn vs. n?®

¢ Similarly, high-radix division array with carry-save
addition

¢ Small carry-look-ahead adder used to determine most
significant bits of remainder to select quotient digit

ECE666/Koren Part.7c.17 Copyright 2010 Koren

Fast Square Root Extraction
¢ Similar to division - small extensions to division unit
¢ Nonrestoring algorithm -
qi=1,1; Q=0.q1,...,qn - calculated square root
¢ Advantages of adding O to the digit set of qi:
* Shift-only operation required when qi=0

* Overlap between regions of ri where gi=1 or qi=0 are selected
leads to reduced precision inspection of remainder

¢ Nonrestoring - must identify ri>0 to correctly set gqi
* Requires precise determination of sign bit of ri
¢ If gi=0 allowed - lower precision comparison
sufficient, enables use of carry-save adders for ri
¢ Remainder: two sequences - partial sum and carries

4 Only a few high-order bits of these two sequences
must be examined to select gi

ECE666/Koren Part.7c.18 Copyright 2010 Koren

Page 9

Selection of qi=0

4 Square root Q restricted to normalized fraction -
1/2 < Q < 1, with q:=1

¢ Radicand: 1/4 <X < 1

¢ Remainder ri-: (i22): -2(Qi-1-2"') < Pi-1 < 2(Qi-1+27")
(Qi-1 is partially calculated root at step i-1 -

Qi-1=0.q91Qz. . .qQi-1

¢ In step i>2, select Qi=0 whenever ri-: is in range

[-(Qi-1 - 2771),(Qi-r + 271
¢If gi=0, ri=2ri.

ECE666/Koren Part.7c.19 Copyright 2010 Koren

Selection Rule for Qi

if r > (Qio1+27Y)
if —(Qi—1— 2771 < risp < (Qim1+2701h)
if ric1 < —(Qi_1—27i71).

= o =

|

¢ Since Qi-1 +27"! and Qi-1 27! are in [1/2,1],
a selection rule which avoids a high-precision
comparison is

N

¢ Similar to the SRT rule

1 i 1/2<2m < 2
0 if —1/2§2T171<1/2
1 i —2<2r ., <-1/2

ECE666/Koren Part.7c.20 Copyright 2010 Koren

Page 10

ro =X 0.0111101

2rg 0.1111010 set g1 =1, @1 = 0.1
Example —(0+271) - 0.1000000
- " 0.0111010
’Z(gi(/)iéélon 2ry 0.1110100 set g2 =1, Q3 = 0.1
= —(2Q1+27%) — 0 1.0100000
T2 1.1010100
21y 1 1.0101000 set g3 =1, Q3 = 0.101
+(2Q2—-2"%) + 0 1.0110000
Ts 0 0.1011000
2r3 0 1.0110000 set g4 =1, Q4= 0.1011
—(2Qs+2"%) — 0 1.0101000
T4 0 0.0001000
2y 0 0.0010000 set gs =0, Q5 = 0.10110
s 0 0.0010000
2rs 0 0.0100000 set gs =0, Qs = 0.101100
L7 0 0.0100000
¢ Square root: 0 0.1000000 set gr =1, Qr — 0.1011001
Q=.10110012 _(29,+2-") - o 10110001
=89/128 rr 1 0.0001111

¢ Final r'emcxinder':14 ,
27 P,z -113/2° = X - Q" = (7808-7921)/2"*

ECE666/Koren Part.7c.21 Copyright 2010 Koren

High-Radix Square Root Extraction
¢p - radix; digit set for qi - {o, o -1,..,1,0,1,..,0}
¢ Computing new remainder: ri = Brii - i (2Qi-1 +qi ')

¢ Example: _
B=4, digit set {2,1,0,1,2} preferable - eliminates
need to generate multiple 3Qi-1

4 Generation of Qi (2Qi-1 + qi 4'i) makes square root
extraction somewhat more complex than division

¢ Calculation can be simplified

¢For gi=1,2 - subtract Q001. & Q010:, respectively

¢For gi=1 - add Q001. - same as (Q-1)111.

¢For qi=2 - add Q010: - same as (Q-1)110:

¢ Two registers with Q and Q-1, updated at every
step, simplify execution of square root algorithm

ECE666/Koren Part.7c.22 Copyright 2010 Koren

Page 11

Selecting Quotient Digit

¢ Only low-precision comparison of remainder needed
to select quotient digit -

* Perform add/subtract in carry-save - small carry-propagate
adder to calculate most significant bits of ri

* To provide inputs to a PLA for selecting square root digit gi
* Other inputs to PLA: most significant bits of root multiple

¢ Several rules for selecting qi have been proposed

* Intervals of remainder determine size of carry-propagate
adder (between 7 and 9 bits for base-4 algorithm with
digits 2,1,0,1,2) and exact PLA entries

¢ Selected qi depends on truncated remainder and
truncated root multiple

¢ In first step no estimated root available
¢ Separate PLA for predicting first few bits of root

ECE666/Koren Part.7c.23 Copyright 2010 Koren

Example - Square Root Using Radix-4
Divider

¢ P-D plot for divide also used for square root

¢ Same PLA (with 19 product terms) used for
predicting next quotient digit and root digit
¢ A separate PLA (with 28 product terms) added

* Inputs - 6 most significant bits of significand and least
significant bit of exponent (indicates whether exponent
odd or even)

* Qutput - 5 most significant bits of root

7\/1]02w _ VOIf-2B+D/271025 4f B s odd
. N 0.01f - 2B/2+1-1023 if F s even

¢ Radicand in [1/4,1] = square root in [1/2,1]

ECE666/Koren Part.7c.24 Copyright 2010 Koren

Page 12

