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Speeding Up the Division Process

♦Unlike multiplication - steps of division are serial

♦Division step consists of selecting quotient digit  
and calculating new partial remainder 

♦Two ways to speed up division:
♦(1) Overlapping full-precision calculation of partial 
remainder in step i with selecting quotient digit in 
step i+1

∗ Possible since not all bits of new partial remainder must be 
known to select next quotient digit

♦(2) Replacing carry-propagate add/subtract 
operation for calculating new partial remainder by 
carry-save operation
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First Speed-Up Method

♦Truncated approximation of new partial remainder 
calculated in parallel to full-precision calculation of 
partial remainder - can be done at high speed
∗ Quotient digit determined before current step completed

♦Instead of: (1) Calculate ri-1 (with carry propagation) in 
step i-1 & (2) input NP most significant bits to PLA to 
determine qi

♦Use a small adder with inputs:                          
most significant bits of previous                     
partial remainder, ββββri-2, and most                    
significant bits of corresponding                    
multiple of divisor, qi-1D

♦Approximate Partial Remainder                        
(APR) adder
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Approximate Partial Remainder Adder

♦Produces approximation of NP most                
significant bits of partial remainder,              
ri-1,  before full-precision add/sub        
operation (ri-1=ββββri-2-qi-1D) is completed 

♦Allows to perform look-ahead selection           
of qi in parallel with calculation of ri-1

♦Size of APR adder determined so that 
sufficiently accurate NP bits generated

♦Uncertainty in result of this adder larger than of 
truncated previous partial remainder ββββri-2 - may 
need additional inputs for quotient look-up table

♦8-bit APR adder sufficient to generate necessary 
inputs to PLA for ββββ=4, αααα=2
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Example:    
P-D Plot       
(ββββ=4, αααα=2)

D∈∈∈∈[1,2)

∗ Horizontal lines 
determined to 
reduce complexity 
of PLA

∗ Only 3 divisor bits 
needed as PLA
inputs - most 
significant bit of 
divisor always 1

∗ For partial 
remainder - 5 bits 
(including sign bit)  
sufficient in most 
cases
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Positive       Remainder
♦ 3 cases (a,b,c) when                                                          
additional bit required

♦ Case a: D=1.001,                                                   
P=1.1 - single                                                    
fractional bit of P
insufficient

♦ Divisor can assume                                              
any value from 1.001
to 1.010

♦ Partial remainder can                                           
have a value from 1.1
to 10.0 - range for P/D
from 1.1/1.010=1.2 to 10.0/1.001=1.77

♦ First requires q=1, while second requires q=2

♦ Add 2nd fractional bit to P

∗ Can select q=1 for P=1.10
and q=2 for P=1.11
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Cases b and c

♦ 8-bit APR adder                                                     
may introduce                                                  
additional error -
increasing P/D range

♦ Case b: D=1.100,                                                  
P=10.0

♦No APR adder: P/D
range from                                                 
10.0/1.101=1.23
to 10.1/1.100=1.66 -
q=1 can be selected

♦ 8-bit APR adder:                                              
introduces error of up                                          
to 2  in ri-1 -
increases to 2  after multiplying by 4

♦ This additional error increases maximum value of P/D from 1.66
to 1.7, requiring q=2

♦ An extra fractional bit of P solves this problem

-6

-4
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Negative Partial Remainder

♦ Represented 
in two's 
complement

♦ 6 cases - 1
or even 2
additional 
output bits of 
APR adder 
required to 
guarantee 
correct 
selection of 
quotient digit
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Second Speed-Up Method

♦In first method - time needed for division step 
determined by add/subtract for remainder -
quotient digit selected in previous step

♦Second method avoids time-consuming carry 
propagation when calculating remainder

♦Truncated remainder sufficient for selecting next 
quotient digit - no need to complete calculation of 
remainder at any intermediate step

♦Replace carry-propagate adder by carry-save adder 
∗ Partial remainder in a redundant form using 2 sequences of 
intermediate sum and carry bits (stored in 2 registers) 

♦Only most significant sum and carry bits must be 
assimilated using APR adder to generate approximate 
remainder and allow selection of quotient digit
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SRT Divider with Redundant Remainder

♦Most time consuming -
calculate approximate                                        
remainder and                                                   
select quotient digit 

♦ In each division step:                                          
carry-save adder                                                  
calculates remainder,                                           
APR adder accepts most                                         
significant sum and                                             
carry bits of                                                   
remainder & generates                                           
required inputs to quotient                                    
selection PLA

♦ As in first method - number                                         
of PLA inputs and its entries need                                    
to be calculated, taking into account uncertainty in sum and 
carry bits representing truncated remainder
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Example
♦An algorithm for high-speed division with ββββ=4, αααα=2,             
D ∈∈∈∈ [1,2) has been implemented

♦Partial remainder calculated in carry-save manner 
resulting in a somewhat more complex design

♦8-bit APR adder used to generate most significant 
remainder bits - inputs to quotient selection PLA

♦Inputs to APR adder: 8 most significant sum bits and 
carry bits in redundant representation of remainder

♦Outputs of APR adder converted to a sign-magnitude 
representation - only 4 bits of approximate partial 
remainder needed in most cases 

♦Additional bit required only in 4 cases - simple PLA
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Further Speed-up of SRT Division

♦Achieved by increasing radix ββββ to 8 or higher  

♦Reduces number of steps to n/3 or lower
♦Several radix-8 SRT dividers have been implemented

♦Main disadvantage: high complexity of PLA - most 
time-consuming unit of divider

♦Avoiding complex PLA - implementing radix-2   SRT
unit as a set of m overlapping radix-2 SRT stages

♦Radix-2 SRT requires very simple quotient selection 
logic - qi ∈∈∈∈ {-1,0,1} solely determined by remainder 
- independent of divisor

♦Must overlap quotient selections for m bits - all m
quotient bits generated in one step

m



Page 7

Copyright 2010 Koren  ECE666/Koren Part.7c.13

Two Overlapping Radix-2 SRT Stages

♦ Implementing        
radix-4 division 

♦ All 3 possible values 

of qi+1 generated 
using 3 Qsel units -
correspond to 3 
possible intermediate 
remainders:        
2ri-1-D, 2ri-1,     
2ri-1+D

♦Only most significant bits                              
of 3 remainders generated 

♦Overall delay: CSA, Qsel, two Mux and final CSA

♦May be faster than radix-4 stage - higher 
complexity of radix-4 PLA
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Extending to Radix-8 SRT division
♦More complex quotient selection circuit - 3 quotient 
digits (qi,qi+1,qi+2) generated in parallel

♦For qi+1:                                                           
calculate speculative remainders 2ri-1-D,2ri-1,2ri-1+D

♦For qi+2:                                                      
calculate 4ri-1-3D,4ri-1-2D,4ri-1-D,4ri-1,4ri-1+D,          
4ri-1+2D,4ri-1+3D

∗ Only most significant bits of these 7 remainders 

♦7 Qsel units required with multiplexors (controlled by 
qi and qi+1) to select correct value of qi+2

♦Extend to 4 overlapping radix-2 stages for radix-16
divider: number of Qsel units increases from 11 to 26

♦Another alternative for a radix-16 divider:                  
2 overlapping radix-4 SRT stages
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Array Dividers
♦All division algorithms can be implemented using arrays: 
n rows with n cells per row for radix-2 division

♦Restoring: each row forms difference between previous 
remainder and divisor and generates quotient bit 
according to sign of difference

♦No need to restore remainder if quotient bit=0 -
either previous remainder or difference transferred to 
next row

♦If ripple-carry in every row - n steps to propagate 
carry in a single row - total execution time of order n²

♦Nonrestoring array: same speed as restoring; only 
advantage - handle negative operands in a simple way

♦Final remainder may be incorrect - sign opposite to 
dividend
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A Non-restoring Array Divider

If T=0 (1) - addition (subtraction) performed;
Subtract - add two's complement of divisor (assumed  
positive) & forced carry=T
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Faster Array Dividers
♦Previous array dividers - add/subtract with carry-
propagation performed in each row

♦Nonrestoring:
∗ Only sign bit of partial remainder needed to select quotient bit

∗ Can be generated by using fast carry-look-ahead circuit 
∗ Other bits of remainder use carry-save adder 

♦Each cell generates Pi and Gi besides sum and carry
♦Pi and Gi of all cells in a row connected to a carry-
look-ahead circuit to generate quotient bit 

♦Execution time - of order n log n vs.  n²

♦Similarly, high-radix division array with carry-save 
addition

♦Small carry-look-ahead adder used to determine most 
significant bits of remainder to select quotient digit
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Fast Square Root Extraction
♦Similar to division - small extensions to division unit 

♦Nonrestoring algorithm -
qi=1,1 ;    Q=0.q1,...,qm - calculated square root

♦Advantages of adding 0 to the digit set of qi: 
∗ Shift-only operation required when qi=0
∗ Overlap between regions of ri where qi=1 or qi=0 are selected 
leads to reduced precision inspection of remainder

♦Nonrestoring - must identify ri≥≥≥≥0 to correctly set qi
∗ Requires precise determination of sign bit of ri

♦If qi=0 allowed - lower precision comparison 
sufficient, enables use of carry-save adders for ri

♦Remainder: two sequences - partial sum and carries

♦Only a few high-order bits of these two sequences 
must be examined to select qi
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Selection of qi=0

♦Square root Q restricted to normalized fraction -
1/2 ≤≤≤≤ Q < 1, with q1=1

♦Radicand:  1/4 ≤≤≤≤ X < 1

♦Remainder ri-1 (i≥≥≥≥2): -2(Qi-1-2  ) ≤≤≤≤ ri-1 ≤≤≤≤ 2(Qi-1+2  )          
(Qi-1 is partially calculated root at step i-1 -
Qi-1=0.q1q2...qi-1

♦In step i≥≥≥≥2, select qi=0 whenever ri-1 is in range                                 

[-(Qi-1 - 2     ),(Qi-1 + 2     )]

♦If qi=0, ri=2ri-1

-i-i  

-i-1-i-1
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Selection Rule for qi 

♦Since Qi-1 +2   and Qi-1 -2   are in [1/2,1], 
a selection rule which avoids a high-precision 
comparison is

♦Similar to the SRT rule 

-i-1-i-1
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Example

♦X=.01111012                                                          
=61/128

♦Square root:                             
Q=.10110012                                                   
=89/128

♦Final remainder:                                                
2  r7 = -113/2   = X - Q   = (7808-7921)/2
-7 1414 2
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High-Radix Square Root Extraction
♦ββββ - radix; digit set for qi - {αααα,αααα -1,…,1,0,1,…,αααα}

♦Computing new remainder: ri = ββββri-1 - qi (2Qi-1 +qi ββββ ) 

♦Example:
ββββ=4,  digit set  {2,1,0,1,2} preferable - eliminates 
need to generate multiple 3Qi-1

♦Generation of qi (2Qi-1 + qi 4  ) makes square root 
extraction somewhat more complex than division 

♦Calculation can be simplified
♦For qi=1,2 - subtract Q0012 & Q0102, respectively

♦For qi=1 - add Q0012 - same as (Q-1)1112

♦For qi=2 - add Q0102 - same as (Q-1)1102

♦Two registers with Q and Q-1, updated at every 
step, simplify execution of square root algorithm

-i

-i
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Selecting Quotient Digit
♦Only low-precision comparison of remainder needed 
to select quotient digit -

∗ Perform add/subtract in carry-save - small carry-propagate 
adder to calculate most significant bits of ri

∗ To provide inputs to a PLA for selecting square root digit qi

∗ Other inputs to PLA: most significant bits of root multiple

♦Several rules for selecting qi have been proposed 
∗ Intervals of remainder determine size of carry-propagate 
adder (between 7 and 9 bits for base-4 algorithm with 
digits 2,1,0,1,2) and exact PLA entries

♦Selected qi depends on truncated remainder and 
truncated root multiple 

♦In first step no estimated root available 
♦Separate PLA for predicting first few bits of root
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Example - Square Root Using Radix-4 
Divider 

♦P-D plot for divide also used for square root

♦Same PLA (with 19 product terms) used for 
predicting next quotient digit and root digit

♦A separate PLA (with 28 product terms) added
∗ Inputs - 6 most significant bits of significand and least 
significant bit of exponent (indicates whether exponent 
odd or even)

∗ Output - 5 most significant bits of root

♦Radicand in [1/4,1] ⇒⇒⇒⇒ square root in [1/2,1]


