
Page 1

Copyright 2010 Koren ECE666/Koren Part.7c.1

Israel Koren

UNIVERSITY OF MASSACHUSETTS
Dept. of Electrical & Computer Engineering

Digital Computer Arithmetic
ECE 666

Part 7c
Fast Division - III

Copyright 2010 Koren ECE666/Koren Part.7c.2

Speeding Up the Division Process

♦Unlike multiplication - steps of division are serial

♦Division step consists of selecting quotient digit
and calculating new partial remainder

♦Two ways to speed up division:
♦(1) Overlapping full-precision calculation of partial
remainder in step i with selecting quotient digit in
step i+1

∗ Possible since not all bits of new partial remainder must be
known to select next quotient digit

♦(2) Replacing carry-propagate add/subtract
operation for calculating new partial remainder by
carry-save operation

Page 2

Copyright 2010 Koren ECE666/Koren Part.7c.3

First Speed-Up Method

♦Truncated approximation of new partial remainder
calculated in parallel to full-precision calculation of
partial remainder - can be done at high speed
∗ Quotient digit determined before current step completed

♦Instead of: (1) Calculate ri-1 (with carry propagation) in
step i-1 & (2) input NP most significant bits to PLA to
determine qi

♦Use a small adder with inputs:
most significant bits of previous
partial remainder, ββββri-2, and most
significant bits of corresponding
multiple of divisor, qi-1D

♦Approximate Partial Remainder
(APR) adder

Copyright 2010 Koren ECE666/Koren Part.7c.4

Approximate Partial Remainder Adder

♦Produces approximation of NP most
significant bits of partial remainder,
ri-1, before full-precision add/sub
operation (ri-1=ββββri-2-qi-1D) is completed

♦Allows to perform look-ahead selection
of qi in parallel with calculation of ri-1

♦Size of APR adder determined so that
sufficiently accurate NP bits generated

♦Uncertainty in result of this adder larger than of
truncated previous partial remainder ββββri-2 - may
need additional inputs for quotient look-up table

♦8-bit APR adder sufficient to generate necessary
inputs to PLA for ββββ=4, αααα=2

Page 3

Copyright 2010 Koren ECE666/Koren Part.7c.5

Example:
P-D Plot
(ββββ=4, αααα=2)

D∈∈∈∈[1,2)

∗ Horizontal lines
determined to
reduce complexity
of PLA

∗ Only 3 divisor bits
needed as PLA
inputs - most
significant bit of
divisor always 1

∗ For partial
remainder - 5 bits
(including sign bit)
sufficient in most
cases

Copyright 2010 Koren ECE666/Koren Part.7c.6

Positive Remainder
♦ 3 cases (a,b,c) when
additional bit required

♦ Case a: D=1.001,
P=1.1 - single
fractional bit of P
insufficient

♦ Divisor can assume
any value from 1.001
to 1.010

♦ Partial remainder can
have a value from 1.1
to 10.0 - range for P/D
from 1.1/1.010=1.2 to 10.0/1.001=1.77

♦ First requires q=1, while second requires q=2

♦ Add 2nd fractional bit to P

∗ Can select q=1 for P=1.10
and q=2 for P=1.11

Page 4

Copyright 2010 Koren ECE666/Koren Part.7c.7

Cases b and c

♦ 8-bit APR adder
may introduce
additional error -
increasing P/D range

♦ Case b: D=1.100,
P=10.0

♦No APR adder: P/D
range from
10.0/1.101=1.23
to 10.1/1.100=1.66 -
q=1 can be selected

♦ 8-bit APR adder:
introduces error of up
to 2 in ri-1 -
increases to 2 after multiplying by 4

♦ This additional error increases maximum value of P/D from 1.66
to 1.7, requiring q=2

♦ An extra fractional bit of P solves this problem

-6

-4

Copyright 2010 Koren ECE666/Koren Part.7c.8

Negative Partial Remainder

♦ Represented
in two's
complement

♦ 6 cases - 1
or even 2
additional
output bits of
APR adder
required to
guarantee
correct
selection of
quotient digit

Page 5

Copyright 2010 Koren ECE666/Koren Part.7c.9

Second Speed-Up Method

♦In first method - time needed for division step
determined by add/subtract for remainder -
quotient digit selected in previous step

♦Second method avoids time-consuming carry
propagation when calculating remainder

♦Truncated remainder sufficient for selecting next
quotient digit - no need to complete calculation of
remainder at any intermediate step

♦Replace carry-propagate adder by carry-save adder
∗ Partial remainder in a redundant form using 2 sequences of
intermediate sum and carry bits (stored in 2 registers)

♦Only most significant sum and carry bits must be
assimilated using APR adder to generate approximate
remainder and allow selection of quotient digit

Copyright 2010 Koren ECE666/Koren Part.7c.10

SRT Divider with Redundant Remainder

♦Most time consuming -
calculate approximate
remainder and
select quotient digit

♦ In each division step:
carry-save adder
calculates remainder,
APR adder accepts most
significant sum and
carry bits of
remainder & generates
required inputs to quotient
selection PLA

♦ As in first method - number
of PLA inputs and its entries need
to be calculated, taking into account uncertainty in sum and
carry bits representing truncated remainder

Page 6

Copyright 2010 Koren ECE666/Koren Part.7c.11

Example
♦An algorithm for high-speed division with ββββ=4, αααα=2,
D ∈∈∈∈ [1,2) has been implemented

♦Partial remainder calculated in carry-save manner
resulting in a somewhat more complex design

♦8-bit APR adder used to generate most significant
remainder bits - inputs to quotient selection PLA

♦Inputs to APR adder: 8 most significant sum bits and
carry bits in redundant representation of remainder

♦Outputs of APR adder converted to a sign-magnitude
representation - only 4 bits of approximate partial
remainder needed in most cases

♦Additional bit required only in 4 cases - simple PLA

Copyright 2010 Koren ECE666/Koren Part.7c.12

Further Speed-up of SRT Division

♦Achieved by increasing radix ββββ to 8 or higher

♦Reduces number of steps to n/3 or lower
♦Several radix-8 SRT dividers have been implemented

♦Main disadvantage: high complexity of PLA - most
time-consuming unit of divider

♦Avoiding complex PLA - implementing radix-2 SRT
unit as a set of m overlapping radix-2 SRT stages

♦Radix-2 SRT requires very simple quotient selection
logic - qi ∈∈∈∈ {-1,0,1} solely determined by remainder
- independent of divisor

♦Must overlap quotient selections for m bits - all m
quotient bits generated in one step

m

Page 7

Copyright 2010 Koren ECE666/Koren Part.7c.13

Two Overlapping Radix-2 SRT Stages

♦ Implementing
radix-4 division

♦ All 3 possible values

of qi+1 generated
using 3 Qsel units -
correspond to 3
possible intermediate
remainders:
2ri-1-D, 2ri-1,
2ri-1+D

♦Only most significant bits
of 3 remainders generated

♦Overall delay: CSA, Qsel, two Mux and final CSA

♦May be faster than radix-4 stage - higher
complexity of radix-4 PLA

Copyright 2010 Koren ECE666/Koren Part.7c.14

Extending to Radix-8 SRT division
♦More complex quotient selection circuit - 3 quotient
digits (qi,qi+1,qi+2) generated in parallel

♦For qi+1:
calculate speculative remainders 2ri-1-D,2ri-1,2ri-1+D

♦For qi+2:
calculate 4ri-1-3D,4ri-1-2D,4ri-1-D,4ri-1,4ri-1+D,
4ri-1+2D,4ri-1+3D

∗ Only most significant bits of these 7 remainders

♦7 Qsel units required with multiplexors (controlled by
qi and qi+1) to select correct value of qi+2

♦Extend to 4 overlapping radix-2 stages for radix-16
divider: number of Qsel units increases from 11 to 26

♦Another alternative for a radix-16 divider:
2 overlapping radix-4 SRT stages

Page 8

Copyright 2010 Koren ECE666/Koren Part.7c.15

Array Dividers
♦All division algorithms can be implemented using arrays:
n rows with n cells per row for radix-2 division

♦Restoring: each row forms difference between previous
remainder and divisor and generates quotient bit
according to sign of difference

♦No need to restore remainder if quotient bit=0 -
either previous remainder or difference transferred to
next row

♦If ripple-carry in every row - n steps to propagate
carry in a single row - total execution time of order n²

♦Nonrestoring array: same speed as restoring; only
advantage - handle negative operands in a simple way

♦Final remainder may be incorrect - sign opposite to
dividend

Copyright 2010 Koren ECE666/Koren Part.7c.16

A Non-restoring Array Divider

If T=0 (1) - addition (subtraction) performed;
Subtract - add two's complement of divisor (assumed
positive) & forced carry=T

Page 9

Copyright 2010 Koren ECE666/Koren Part.7c.17

Faster Array Dividers
♦Previous array dividers - add/subtract with carry-
propagation performed in each row

♦Nonrestoring:
∗ Only sign bit of partial remainder needed to select quotient bit

∗ Can be generated by using fast carry-look-ahead circuit
∗ Other bits of remainder use carry-save adder

♦Each cell generates Pi and Gi besides sum and carry
♦Pi and Gi of all cells in a row connected to a carry-
look-ahead circuit to generate quotient bit

♦Execution time - of order n log n vs. n²

♦Similarly, high-radix division array with carry-save
addition

♦Small carry-look-ahead adder used to determine most
significant bits of remainder to select quotient digit

Copyright 2010 Koren ECE666/Koren Part.7c.18

Fast Square Root Extraction
♦Similar to division - small extensions to division unit

♦Nonrestoring algorithm -
qi=1,1 ; Q=0.q1,...,qm - calculated square root

♦Advantages of adding 0 to the digit set of qi:
∗ Shift-only operation required when qi=0
∗ Overlap between regions of ri where qi=1 or qi=0 are selected
leads to reduced precision inspection of remainder

♦Nonrestoring - must identify ri≥≥≥≥0 to correctly set qi
∗ Requires precise determination of sign bit of ri

♦If qi=0 allowed - lower precision comparison
sufficient, enables use of carry-save adders for ri

♦Remainder: two sequences - partial sum and carries

♦Only a few high-order bits of these two sequences
must be examined to select qi

Page 10

Copyright 2010 Koren ECE666/Koren Part.7c.19

Selection of qi=0

♦Square root Q restricted to normalized fraction -
1/2 ≤≤≤≤ Q < 1, with q1=1

♦Radicand: 1/4 ≤≤≤≤ X < 1

♦Remainder ri-1 (i≥≥≥≥2): -2(Qi-1-2) ≤≤≤≤ ri-1 ≤≤≤≤ 2(Qi-1+2)
(Qi-1 is partially calculated root at step i-1 -
Qi-1=0.q1q2...qi-1

♦In step i≥≥≥≥2, select qi=0 whenever ri-1 is in range

[-(Qi-1 - 2),(Qi-1 + 2)]

♦If qi=0, ri=2ri-1

-i-i

-i-1-i-1

Copyright 2010 Koren ECE666/Koren Part.7c.20

Selection Rule for qi

♦Since Qi-1 +2 and Qi-1 -2 are in [1/2,1],
a selection rule which avoids a high-precision
comparison is

♦Similar to the SRT rule

-i-1-i-1

Page 11

Copyright 2010 Koren ECE666/Koren Part.7c.21

Example

♦X=.01111012
=61/128

♦Square root:
Q=.10110012
=89/128

♦Final remainder:
2 r7 = -113/2 = X - Q = (7808-7921)/2
-7 1414 2

Copyright 2010 Koren ECE666/Koren Part.7c.22

High-Radix Square Root Extraction
♦ββββ - radix; digit set for qi - {αααα,αααα -1,…,1,0,1,…,αααα}

♦Computing new remainder: ri = ββββri-1 - qi (2Qi-1 +qi ββββ)

♦Example:
ββββ=4, digit set {2,1,0,1,2} preferable - eliminates
need to generate multiple 3Qi-1

♦Generation of qi (2Qi-1 + qi 4) makes square root
extraction somewhat more complex than division

♦Calculation can be simplified
♦For qi=1,2 - subtract Q0012 & Q0102, respectively

♦For qi=1 - add Q0012 - same as (Q-1)1112

♦For qi=2 - add Q0102 - same as (Q-1)1102

♦Two registers with Q and Q-1, updated at every
step, simplify execution of square root algorithm

-i

-i

Page 12

Copyright 2010 Koren ECE666/Koren Part.7c.23

Selecting Quotient Digit
♦Only low-precision comparison of remainder needed
to select quotient digit -

∗ Perform add/subtract in carry-save - small carry-propagate
adder to calculate most significant bits of ri

∗ To provide inputs to a PLA for selecting square root digit qi

∗ Other inputs to PLA: most significant bits of root multiple

♦Several rules for selecting qi have been proposed
∗ Intervals of remainder determine size of carry-propagate
adder (between 7 and 9 bits for base-4 algorithm with
digits 2,1,0,1,2) and exact PLA entries

♦Selected qi depends on truncated remainder and
truncated root multiple

♦In first step no estimated root available
♦Separate PLA for predicting first few bits of root

Copyright 2010 Koren ECE666/Koren Part.7c.24

Example - Square Root Using Radix-4
Divider

♦P-D plot for divide also used for square root

♦Same PLA (with 19 product terms) used for
predicting next quotient digit and root digit

♦A separate PLA (with 28 product terms) added
∗ Inputs - 6 most significant bits of significand and least
significant bit of exponent (indicates whether exponent
odd or even)

∗ Output - 5 most significant bits of root

♦Radicand in [1/4,1] ⇒⇒⇒⇒ square root in [1/2,1]

