
Page 1

Copyright 2010 Koren ECE666/Koren Part.6a.1

Israel Koren

UNIVERSITY OF MASSACHUSETTS
Dept. of Electrical & Computer Engineering

Digital Computer Arithmetic
ECE 666

Part 6a
High-Speed Multiplication - I

Copyright 2010 Koren ECE666/Koren Part.6a.2

Speeding Up Multiplication
♦Multiplication involves 2 basic operations - generation of
partial products + their accumulation

♦2 ways to speed up - reducing number of partial
products and/or accelerating accumulation

♦3 types of high-speed multipliers:

♦Sequential multiplier - generates partial products
sequentially and adds each newly generated product to
previously accumulated partial product

♦Parallel multiplier - generates partial products in
parallel, accumulates using a fast multi-operand adder

♦Array multiplier - array of identical cells generating
new partial products; accumulating them simultaneously

∗ No separate circuits for generation and accumulation

∗ Reduced execution time but increased hardware complexity

Page 2

Copyright 2010 Koren ECE666/Koren Part.6a.3

Reducing Number of Partial Products

♦Examining 2 or more bits of multiplier at a time

♦Requires generating A (multiplicand), 2A, 3A

♦Reduces number of partial products to n/2 -
each step more complex

♦Several algorithm which do not increase
complexity proposed - one is Booth's algorithm

♦Fewer partial products generated for groups of
consecutive 0’s and 1’s

Copyright 2010 Koren ECE666/Koren Part.6a.4

Booth’s Algorithm
♦Group of consecutive 0’s in multiplier - no new partial
product - only shift partial product right one bit
position for every 0

♦Group of m consecutive 1's in multiplier - less than m
partial products generated

♦...01…110... = ...10...000... - ...00...010...

♦Using SD (signed-digit) notation =...100...010...

♦Example:

♦ ...011110... = ...100000... - ...000010... =
...100010... (decimal notation: 15=16-1)

♦Instead of generating all m partial products - only 2
partial products generated

♦First partial product added - second subtracted -
number of single-bit shift-right operations still m

-

-

Page 3

Copyright 2010 Koren ECE666/Koren Part.6a.5

Booth’s Algorithm - Rules

♦Recoding multiplier xn-1 xn- 2...x1 x0 in SD code

♦Recoded multiplier yn-1 yn-2 ... y1 y0

♦xi,xi-1 of multiplier examined to generate yi

♦Previous bit - xi-1 - only reference bit

♦i=0 - reference bit x-1=0

♦Simple recoding - yi = xi-1 - xi
♦No special order - bits can be recoded in parallel

♦Example: Multiplier 0011110011(0) recoded as
0100010101 - 4 instead of 6 add/subtracts

--

Copyright 2010 Koren ECE666/Koren Part.6a.6

Sign Bit

♦Two's complement - sign bit xn-1 must be used
♦Deciding on add or subtract operation - no shift
required - only prepares for next step

♦Verify only for negative values of X (xn-1=1)
♦2 cases

♦Case 1 - A subtracted - necessary correction

♦Case 2 - without sign bit - scan over a string of
1's and perform an addition for position n-1

∗ When xn-1=1 considered - required addition not done

∗ Equivalent to subtracting A⋅⋅⋅⋅2 - correction termn-1

Page 4

Copyright 2010 Koren ECE666/Koren Part.6a.7

Example

Copyright 2010 Koren ECE666/Koren Part.6a.8

Booth’s Algorithm - Properties

♦Multiplication starts from least significant bit

♦If started from most significant bit - longer
adder/subtractor to allow for carry propagation

♦No need to generate recoded SD multiplier
(requiring 2 bits per digit)

∗ Bits of original multiplier scanned - control signals for
adder/subtractor generated

♦Booth's algorithm can handle two's complement
multipliers

∗ If unsigned numbers multiplied - 0 added to left of
multiplier (xn=0) to ensure correctness

Page 5

Copyright 2010 Koren ECE666/Koren Part.6a.9

Drawbacks to Booth's Algorithm
♦Variable number of add/subtract operations and
of shift operations between two consecutive
add/subtract operations

∗ Inconvenient when designing a synchronous multiplier

♦Algorithm inefficient with isolated 1's

♦Example:

♦001010101(0) recoded as 011111111, requiring
8 instead of 4 operations

♦Situation can be improved by examining 3 bits of
X at a time rather than 2

- -- -

Copyright 2010 Koren ECE666/Koren Part.6a.10

Radix-4 Modified Booth Algorithm

♦Bits xi and xi-1 recoded into yi and yi-1 -
xi-2 serves as reference bit

♦Separately - xi-2 and xi-3 recoded into yi-2 and
yi-3 - xi-4 serves as reference bit

♦Groups of 3 bits each overlap - rightmost being
x1 x0 (x-1), next x3 x2 (x1), and so on

Page 6

Copyright 2010 Koren ECE666/Koren Part.6a.11

Radix-4 Algorithm - Rules

♦i=1,3,5,…

♦Isolated 0/1
handled
efficiently

♦If xi-1 is an
isolated 1, yi-1=1 - only a single operation needed

♦Similarly - xi-1 an isolated 0 in a string of 1's -
...10(1)… recoded as ...11... or ...01… - single
operation performed

♦Exercise: To find required operation - calculate
xi-1+xi-2-2xi for odd i’s and represent result as a
2-bit binary number yiyi-1 in SD

- -

Copyright 2010 Koren ECE666/Koren Part.6a.12

Radix-4 vs. Radix-2 Algorithm

♦01|01|01|01|(0) yields 01|01|01|01| - number of
operations remains 4 - the minimum

♦00|10|10|10|(0) yields 01|01|01|10|, requiring 4,
instead of 3, operations

♦Compared to radix-2 Booth's algorithm - less
patterns with more partial products; Smaller
increase in number of operations

♦Can design n-bit synchronous multiplier that
generates exactly n/2 partial products

♦Even n - two's complement multipliers handled
correctly; Odd n - extension of sign bit needed

♦Adding a 0 to left of multiplier needed if unsigned
numbers are multiplied and n odd - 2 0’s if n even

- - -

Page 7

Copyright 2010 Koren ECE666/Koren Part.6a.13

Example

♦n/2=3 steps ; 2 multiplier bits in each step

♦All shift operations are 2 bit position shifts

♦Additional bit for storing correct sign required to
properly handle addition of 2A

Copyright 2010 Koren ECE666/Koren Part.6a.14

Radix-8 Modified Booth's Algorithm
♦Recoding extended to 3 bits at a time -
overlapping groups of 4 bits each

♦Only n/3 partial products generated - multiple
3A needed - more complex basic step

♦Example: recoding 010(1) yields yi yi-1 yi-2=011
♦Technique for simplifying generation and
accumulation of ±±±±3A exists

♦To find minimal number of add/subtract ops
required for a given multiplier - find minimal SD
representation of multiplier

♦Representation with smallest number of nonzero
digits -

Page 8

Copyright 2010 Koren ECE666/Koren Part.6a.15

Obtaining Minimal Representation of X

♦yn-1yn-2... y0 is a minimal representation of an
SD number if yi⋅⋅⋅⋅yi-1=0 for 1≤≤≤≤ i≤≤≤≤ n-1, given that
most significant bits can satisfy yn-1⋅⋅⋅⋅yn-2 ≠≠≠≠ 1

♦Example:
Representation
of 7 with 3 bits
111 minimal
representation
although
yi⋅⋅⋅⋅yi-1 ≠≠≠≠ 0

♦For any X -
add a 0 to its
left to satisfy
above condition

Copyright 2010 Koren ECE666/Koren Part.6a.16

Canonical Recoding

♦Multiplier bits examined
one at a time from right;
xi+1 - reference bit

♦To correctly handle a
single 0/1 in string of
1's/0’s - need information on string to right

♦“Carry” bit - 0 for 0's and 1 for 1's

♦As before, recoded multiplier can be used without
correction if represented in two's complement

♦Extend sign bit xn-1 - xn-1xn-1xn-2…x0
♦Can be expanded to two or more bits at a time

♦Multiples needed for 2 bits - ±±±±A and ±±±±2A

Page 9

Copyright 2010 Koren ECE666/Koren Part.6a.17

Disadvantages of Canonical Recoding

♦Bits of multiplier generated sequentially

♦In Booth’s algorithm - no “carry” propagation -
partial products generated in parallel and a fast
multi-operand adder used

♦To take full advantage of minimum number of
operations - number of add/subtracts and length
of shifts must be variable - difficult to
implement

♦For uniforms shifts - n/2 partial products - more
than the minimum in canonical recoding

Copyright 2010 Koren ECE666/Koren Part.6a.18

Alternate 2-bit-
at-a-time
Algorithm

♦Reducing number of
partial products but
still uniform shifts
of 2 bits each

♦xi+1 reference bit for xi xi-1 - i odd

♦±±±±2A,±±±±4A can be generated using shifts

♦4A generated when (xi+1)xi (xi-1)=(0)11 - group of
1's - not for (xi+3)(xi+2)xi+1 - 0 in rightmost position

∗ Not recoding - cannot express 4 in 2 bits

∗ Number of partial products - always n/2
∗ Two's complement multipliers - extend sign bit

∗ Unsigned numbers - 1 or 2 0’s added to left of multiplier

Page 10

Copyright 2010 Koren ECE666/Koren Part.6a.19

Example

♦Multiplier 01101110 - partial products:

♦Translates to the SD number 010110010 - not
minimal - includes 2 adjacent nonzero digits

♦Canonical recoding yields 010010010 - minimal
representation

Copyright 2010 Koren ECE666/Koren Part.6a.20

Dealing with Least significant Bit

♦For the rightmost pair x1x0, if x0 = 1 -
considered continuation of string of 1's that never
really started - no subtraction took place

♦Example: multiplier 01110111 - partial products:

♦Correction: when x0=1 - set initial partial product
to -A instead of 0

♦4 possible cases:

Page 11

Copyright 2010 Koren ECE666/Koren Part.6a.21

Example

♦Previous
example -

♦Multiplier's sign bit extended in order to decide
that no operation needed for first pair of
multiplier bits

♦As before - additional bit for holding correct
sign is needed, because of multiples like -2A

Copyright 2010 Koren ECE666/Koren Part.6a.22

Extending the Alternative Algorithm

♦The above method can be extended to three bits
or more at each step

♦However, here too, multiples of A like 3A or
even 6A are needed and

∗ Prepare in advance and store

∗ Perform two additions in a single step

♦For example, for (0)101 we need 8-2=6, and for
(1)001, -8+2=-6

Page 12

Copyright 2010 Koren ECE666/Koren Part.6a.23

Implementing Large Multipliers Using
Smaller Ones

♦Implementing n x n bit multiplier as a single
integrated circuit - several such circuits for
implementing larger multipliers can be used

♦2n x 2n bit multiplier can be constructed out of 4
n x n bit multipliers based on :

♦AH , AL - most and least significant halves of A ;
XH , XL - same for X

Copyright 2010 Koren ECE666/Koren Part.6a.24

Aligning Partial Products

♦4 partial products of 2n bits
- correctly aligned before adding

♦Last arrangement - minimum
height of matrix - 1 level of
carry-save addition and a CPA

♦n least significant bits - already
bits of final product - no further
addition needed

♦2n center bits - added by 2n-bit CSA
with outputs connected to a CPA

♦n most significant bits connected to same CPA,
since center bits may generate carry into most
significant bits - 3n-bit CPA needed

Page 13

Copyright 2010 Koren ECE666/Koren Part.6a.25

Decomposing a Large Multiplier into
Smaller Ones - Extension

♦Basic multiplier - n x m bits - n ≠≠≠≠ m

♦Multipliers larger than 2n x 2m can be implemented

♦Example: 4n x 4n bit multiplier - implemented using
n x n bit multipliers

∗ 4n x 4n bit multiplier requires 4 2n x 2n bit multipliers

∗ 2n x 2n bit multiplier requires 4 n x n bit multipliers

∗ Total of 16 n x n bit multipliers

∗ 16 partial products - aligned
before being added

♦Similarly - for any kn x kn
bit multiplier with integer k

Copyright 2010 Koren ECE666/Koren Part.6a.26

Adding Partial Products

♦After aligning 16 products
- 7 bits in one column need
to be added

♦Method 1: (7,3) counters -
generating 3 operands added by
(3,2) counters - generating 2
operands added by a CPA

♦Method 2: Combining 2 sets
of counters into a set
of (7;2) compressors

♦Selecting more
economical multi-operand adder - discussed next

