The IEEE Floating-Point Standard

♦ Four formats for floating-point numbers
♦ First two:
 * basic single-precision 32-bit format and
 * double-precision 64-bit format
♦ Other two - extended formats for intermediate results
 ♦ Single extended format - at least 44 bits
 ♦ Double extended format - at least 80 bits
♦ Higher precision and range than corresponding 32- and 64-bit formats
Single-Precision Format

- Most important objective - precision of representation
- Base 2 allows a hidden bit - similar to DEC format
- Exponent field of length 8 bits for a reasonable range

| S | 8 bits - biased exponent E | 23 bits - unsigned fraction f |

- 256 combinations of 8 bits in exponent field

 * E=0 reserved for zero (with fraction f=0) and denormalized numbers (with fraction f ≠ 0)

 * E=255 reserved for ±∞ (with fraction f=0) and NaN (with fraction f ≠ 0)

- For 1 < E < 254 -

 \[F = (-1)^S \cdot 1.f \cdot 2^{E-127}. \]

IEEE vs. DEC

- Exponent bias - 127 instead of 2^{e-1} = 2^{7} = 128
- Larger maximum value of true exponent - 254-127=127 instead of 254-128=126 - larger range
- Similar effect - significand of 1.f instead of 0.1f -
- Largest and smallest positive numbers -

 \[F_{\text{max}}^+ = (2 - 2^{-23}) \cdot 2^{254-127} = (1 - 2^{-24}) \cdot 2^{128} \]

 \[F_{\text{min}}^+ = 1.0 \cdot 2^{1-127} = 2^{-126} \]

 instead of

 \[F_{\text{max}}^+ = (1 - 2^{-24}) \cdot 2^{127} \text{ and } F_{\text{min}}^+ = 2^{-128} \]

- Exponent bias and significand range selected to allow reciprocal of all normalized numbers (in particular, \(F_{\text{min}}^+ \)) to be represented without overflow - not true in DEC format
Special Values in IEEE Format

<table>
<thead>
<tr>
<th></th>
<th>$f = 0$</th>
<th>$f \neq 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E = 0$</td>
<td>0</td>
<td>Denormalized</td>
</tr>
<tr>
<td>$E = 255$</td>
<td>$\pm\infty$</td>
<td>∞</td>
</tr>
</tbody>
</table>

- $\pm\infty$ - represented by $f=0$, $E=255$, $S=0,1$ - must obey all mathematical conventions: $F+\infty=\infty$, $F/\infty=0$
- **Denormalized numbers** - represented by $E=0$ - values smaller than smallest normalized number - lowering probability of exponent underflow
- $F=(-1)^S \cdot 0.f \cdot 2^{-126}$
- **Or** - $F=(-1)^S \cdot 0.f \cdot 2^{1-127}$ - same bias as normalized numbers

Denormalized Numbers

- No hidden bit - significands not normalized
- Exponent - -126 selected instead of $0-127=-127$ - smallest normalized number is $F_{min} = 1.2^{-126}$
- Smallest representable number is $2^{-23} \cdot 2^{-126} = 2^{-149}$ instead of 2^{-126} - gradual (or graceful) underflow
- Does not eliminate underflow - but reduces gap between smallest representable number and zero; 2^{-149} = distance between any two consecutive denormalized numbers = distance between two consecutive normalized numbers with smallest exponent $1-127=-126$
Denormals & Extended formats

♦ Denormalized numbers not included in all designs of arithmetic units that follow the IEEE standard
 * Their handling is different requiring a more complex design and longer execution time
 * Even designs that implement them allow programmers to avoid their use if faster execution is desired

♦ The single-extended format for intermediate results within evaluation of complex functions like transcendental and powers

♦ Extends exponent from 8 to 11 bits and significand from $23+1$ to 32 or more bits (no hidden bit)
 * Total length is at least $1+11+32=44$ bits

NaN (E=255)

♦ $f \neq 0$ - large number of values
 * Two kinds - signaling (or trapping), and quiet (nontrapping) - differentiated by most significant bits of fraction - remaining bits contain system-dependent information
 * Example of a signaling NaN - uninitialized variable
 * It sets Invalid operation exception flag when arithmetic operation on this NaN is attempted; Quiet NaN - does not
 * Turns into quiet NaN when used as operand if Invalid operation trap is disabled (avoid setting Invalid Op flag later)
 * Quiet NaN produced when invalid operation ($0 \cdot \infty$) attempted - this operation had already set the Invalid Op flag once. Fraction field may contain a pointer to offending code line
 * Quiet NaN, as operand will produce quiet NaN result and not set exception. For example, NaN+5=NaN. If both operands quiet NaNs, result is the NaN with smallest significand
Double-Precision Format

♦ Main consideration - range; exponent field - 11 bits

<table>
<thead>
<tr>
<th>S</th>
<th>11 bits - biased exponent E</th>
<th>52 bits - unsigned fraction f</th>
</tr>
</thead>
</table>

♦ E=0,2047 reserved for same purposes as in single-precision format

♦ For $1 \leq E \leq 2046$ -

$$F = (-1)^S \times 1.f \times 2^{E-1023}$$

♦ Double extended format - exponent field - 15 bits, significand field - 64 or more bits (no hidden bit), total number of bits - at least $1+15+64=80$

Round-off Schemes

♦ Accuracy of results in floating-point arithmetic is limited even if intermediate results are accurate

♦ Number of computed digits may exceed total number of digits allowed by format - extra digits must be disposed of before storing

♦ Example - multiplying two significands of length m - product of length $2m$ - must be rounded off to m digits

♦ Considerations when selecting a round-off scheme -
 * Accuracy of results (numerical considerations)
 * Cost of implementation and speed (machine considerations)
Requirements for Rounding

- x, y - real numbers; Fl - set of machine representations in a given floating-point format; $Fl(x)$ - machine representation of x

- Conditions for rounding:
 * $Fl(x) \leq Fl(y)$ for $x \leq y$
 * If $x \in Fl$ - $Fl(x)=x$
 * If F_1, F_2 consecutive in Fl and $F_1 \leq x \leq F_2$, then either $Fl(x)=F_1$ or $Fl(x)=F_2$

- d - number of extra digits kept in arithmetic unit (in addition to m significand digits) before rounding

- Assumption - radix point between m most significant digits (of significand) and d extra digits

- Example - Rounding 2.99_{10} into an integer

Truncation (Chopping)

- d extra digits removed - no change in m remaining digits - rounding towards zero

- For $F_1 \leq x \leq F_2$ - $\text{Trunc}(x)$ results in F_1 ($\text{Trunc}(2.99)=2$)

- Fast method - no extra hardware

- Poor numerical performance - Error up to ulp

- $\text{Trunc}(x)$ lies entirely below ideal dotted line (infinite precision)
Rounding Bias

- **Rounding bias** - measures tendency of a round-off scheme towards errors of a particular sign
- Ideally - scheme is unbiased or has a small bias
- Truncation has a **negative bias**
- **Definition** - Error = Trunc(x) - x; for a given d - bias is average error for a set of 2^d consecutive numbers with a uniform distribution
- **Example** - Truncation, d=2
 - X is any significand of length m
 - Sum of errors for all $2^d = 4$ consecutive numbers = $-3/2$
- Bias = average error = $-3/8$

<table>
<thead>
<tr>
<th>Number</th>
<th>Trunc(x)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.00</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>X.01</td>
<td>X</td>
<td>$-1/4$</td>
</tr>
<tr>
<td>X.10</td>
<td>X</td>
<td>$-1/2$</td>
</tr>
<tr>
<td>X.11</td>
<td>X</td>
<td>$-3/4$</td>
</tr>
</tbody>
</table>

Round to Nearest Scheme

- **F1 ≤ x ≤ F2** - Round(x) = nearest to x out of F1,F2 - used in many arithmetic units
- Obtained by adding 0.12 (half a ulp) to x and retaining the integer (chopping fraction)
- **Example** - x=2.99 - adding 0.5 and chopping off fractional part of 3.49 results in 3
- Maximum error - x=2.50 - 2.50+0.50=3.00 result = 3, error = 0.5
- A single extra digit (d=1) is sufficient
Bias of Round to Nearest

- Round(x) - nearly symmetric around ideal line - better than truncation
- Slight positive bias - due to round up of X.10

\[d=2 : \]

<table>
<thead>
<tr>
<th>Number</th>
<th>Round-to-nearest(x)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.00</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>X.01</td>
<td>X</td>
<td>-1/4</td>
</tr>
<tr>
<td>X.10</td>
<td>X + 1</td>
<td>+1/2</td>
</tr>
<tr>
<td>X.11</td>
<td>X + 1</td>
<td>+1/4</td>
</tr>
</tbody>
</table>

- Sum of errors=1/2, bias=1/8, smaller than truncation
- Same sum of errors obtained for d>2 - bias=1/2 \cdot 2^{-d}

Round to Nearest Even

- In case of a tie (X.10), choose out of F1 and F2 the even one (with least-significant bit 0)
- Alternately rounding up and down - unbiased
- Round-to-Nearest-Odd - select the one with least-significant bit 1

\[d=2 : \]

<table>
<thead>
<tr>
<th>Number</th>
<th>Round(x)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.00</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>X.01</td>
<td>X</td>
<td>-1/4</td>
</tr>
<tr>
<td>X.10</td>
<td>X + 1</td>
<td>+1/2</td>
</tr>
<tr>
<td>X.11</td>
<td>X + 1</td>
<td>+1/4</td>
</tr>
</tbody>
</table>

- Sum of errors=0
- Bias=0
- Mandatory in IEEE floating-point standard
ROM Rounding

♦ Disadvantage of round-to-nearest schemes - require a complete add operation - carry propagation across entire significand

♦ Suggestion - use a ROM (read-only memory) with look-up table for rounded results

♦ Example - a ROM with
 l address lines - inputs are l-1 (out of m) least significant bits of significand and most significant bit out of d extra bits

2^l \times (l - 1) ROM

ROM Rounding - Examples

♦ ROM has 2^l rows of l-1 bit each - correct rounding in most cases

♦ When all l-1 low-order bits of significand are 1's - ROM returns all 1's (truncating instead of rounding) avoiding full addition

♦ Example - l=8 - fast lookup - 255 out of 256 cases are properly rounded

♦ Example: l=3
Bias of ROM Rounding

- **Example** -

 \[l=3 \; ; \; d=1 \]

- **Sum of errors** = 1

- **Bias** = 1/8

- **In general** - \(\text{bias} = \frac{1}{2} \left[\left(\frac{1}{2} \right)^d - \left(\frac{1}{2} \right)^{l-1} \right] \)

- **When** \(l \) is large enough - ROM rounding converges to round-to-nearest - bias converges to \(1/2(1/2) \)

- **If the round-to-nearest-even modification is adopted** - bias of modified ROM rounding converges to zero

<table>
<thead>
<tr>
<th>Number</th>
<th>ROM((x))</th>
<th>Error</th>
<th>Number</th>
<th>ROM((x))</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00.0</td>
<td>X'00.</td>
<td>0</td>
<td>X'10.0</td>
<td>X'10.</td>
<td>0</td>
</tr>
<tr>
<td>X'00.1</td>
<td>X'01.</td>
<td>+1/2</td>
<td>X'10.1</td>
<td>X'11.</td>
<td>+1/2</td>
</tr>
<tr>
<td>X'01.0</td>
<td>X'01.</td>
<td>0</td>
<td>X'11.0</td>
<td>X'11.</td>
<td>0</td>
</tr>
<tr>
<td>X'01.1</td>
<td>X'10.</td>
<td>+1/2</td>
<td>X'11.1</td>
<td>X'11.</td>
<td>−1/2</td>
</tr>
</tbody>
</table>

Rounding and Interval Arithmetic

- **Four rounding modes in IEEE standard**

 * Round-to-nearest-even (default)
 * Round toward zero (truncate)
 * Round toward \(\infty \)
 * Round toward \(-\infty\)

- **Last 2** - useful for Interval Arithmetic

 * Real number \(a \) represented by lower and upper bounds \(a_1 \) and \(a_2 \)
 * Arithmetic operations operate on intervals
 * Calculated interval provides estimate on accuracy of computation

 \[
 [a_1, a_2] + [b_1, b_2] = [a_1 + b_1, a_2 + b_2] \\
 [a_1, a_2] - [b_1, b_2] = [a_1 - b_2, a_2 - b_1] \\
 [a_1, a_2] \times [b_1, b_2] = [\min\{a_1b_1, a_1b_2, a_2b_1, a_2b_2\}, \max\{a_1b_1, a_1b_2, a_2b_1, a_2b_2\}]

 * Lower bound rounded toward \(-\infty\), upper - toward \(\infty\)
Guard Digits for Multiply/Divide

- Multiplication has a double-length result - not all extra digits needed for proper rounding
- Similar situation - adding or subtracting two numbers with different exponents
- How many extra digits are needed for rounding and for postnormalization with leading zeros?
- Division of signed-magnitude fractions - no extra digits - shift right operation may be required
- Multiplying two normalized fractions - at most one shift left needed if $\beta=2$ (k positions if $\beta = 2^k$) \Rightarrow one guard digit (radix β) is sufficient for postnormalization
- A second guard digit is needed for round-to-nearest - total of two - G (guard) and R (round)
- Exercise - Same for range $[1, 2)$ (IEEE standard)

Guard, Round and Sticky digits

- Round-to-nearest-even - indicator whether all additional digits generated in multiply are zero - detect a tie
- Indicator is a single bit - logical OR of all additional bits - sticky bit
- Three bits - G, R, S (sticky) - sufficient even for round-to-nearest-even
- Computing S when multiplying does not require generating all least significant bits of product
- Number of trailing zeros in product equals sum of numbers of zeros in multiplier and multiplicand
- Other techniques for computing sticky bit exist
Guard digits for Add/Subtract

- **Add/subtract** more complicated - especially when final operation (after examining sign bits) is subtract
- **Assumption** - normalized signed-magnitude fractions

<table>
<thead>
<tr>
<th>F_1</th>
<th>F_2 aligned</th>
<th>$F_1 - F_2$</th>
<th>Postnormalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.100000101100</td>
<td>0.001100000001</td>
<td>0.010100101010</td>
<td>0.101001010101</td>
</tr>
</tbody>
</table>

- **Subtract** - for postnormalization all shifted-out digits of subtrahend may need to participate in subtraction
 - Number of required guard digits = number in significand field - double size of significand adder/subtractor
- **If** subtrahend shifted more than 1 position to right (pre-alignment) - difference has at most 1 leading zero
- **At most one** shifted-out digit required for postnormalization

Subtract - Example 1

- **Calculating** $A-B$
- Significands of A and B are 12 bits long, base=2, $E_A-E_B=2$ - requiring a 2-bit shift of subtrahend B in pre-alignment step

<table>
<thead>
<tr>
<th>A</th>
<th>B aligned</th>
<th>$A-B$</th>
<th>Postnormalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.100000101100</td>
<td>0.001100000001</td>
<td>0.010100101010</td>
<td>0.101001010101</td>
</tr>
</tbody>
</table>

- Same result obtained even if only one guard bit participates in subtraction generating necessary borrow
Subtract – Example 2

♦ Different if most significant shifted-out bit is 0
♦ Same two significands – \(\text{E}_A - \text{E}_B = 6 \) \(\rightarrow \) B’s significand shifted 6 positions

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(\text{E}_A)</th>
<th>(\text{E}_B = 0)</th>
<th>(A - B)</th>
<th>(\text{E}_A - \text{E}_B = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B) aligned</td>
<td>0.1000001011000</td>
<td>0.000000110000</td>
<td>0.0111111100111</td>
<td>0.111111110111</td>
<td>110010</td>
</tr>
</tbody>
</table>

* If only one guard bit – 4 least significant bits of result after postnormalization would be 1000 instead of 0111
* Long sequence of borrows – seems that all additional digits in B needed to generate a borrow

♦ Possible conclusion: in the worst case – number of digits doubled

♦ Statement: Enough to distinguish between two cases:
 * (1) All additional bits (not including the guard bit) are 0
 * (2) at least one of the additional bits is 1

Proof of Statement

* All extra digits in \(A \) are zeros (not preshifted)
* Resulting three least significant bits in \(A - B \) (011 in example 2) are independent of exact position of 1’s in extra digits of B
* We only need to know whether a 1 was shifted out or not – sticky bit can be used – if 1 is shifted into it during alignment it will be 1 – otherwise 0 – logical OR of all extra bits of B
* Sticky bit participates in subtraction and generates necessary borrow

* Using \(G \) and \(S \) –

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(\text{E}_A)</th>
<th>(\text{E}_B = 0)</th>
<th>(A - B)</th>
<th>(\text{E}_A - \text{E}_B = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B) aligned</td>
<td>0.1000001011000</td>
<td>0.000000110000</td>
<td>0.011111110011</td>
<td>0.111111110111</td>
<td>110010</td>
</tr>
</tbody>
</table>

* \(G \) and \(S \) sufficient for postnormalization
* In round-to-nearest – an additional accurate bit needed – sticky bit not enough – \(G,R,S \) required
Example 3 \((E_A - E_B = 6)\)

- **Correct result**

<table>
<thead>
<tr>
<th></th>
<th>(A) 0.100000101100</th>
<th>000000</th>
<th>(B) aligned 0.000000110000</th>
<th>010110</th>
<th>(A - B) 0.000000110000</th>
<th>(G) S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postnormalization</td>
<td>0.111111110111</td>
<td>0</td>
<td>Postnormalization 0.111111110111</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Using only \(G\) and \(S\)

- **Round bit after postnormalization - 0**, sticky bit cannot be used for rounding

- Using \(G\), \(R\), \(S\)

- Correct \(R = 0\) available for use in round-to-nearest

For round-to-nearest-even: sticky bit needed to detect a tie available - serves two purposes

Example 4 - No Postnormalization

- Rounding requires a round bit and a sticky bit

- For round-to-nearest-even

 * original \(G\) can be an \(R\) bit
 * original \(R\) and \(S\) ORed to generate a new sticky bit \(S\)

- \(E_A - E_B = 6\)

<table>
<thead>
<tr>
<th></th>
<th>(A) 0.100000101100</th>
<th>(B) 0.110000010001</th>
<th>(G) R S</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>0.100000101100</td>
<td>0.000000110000</td>
<td>0</td>
</tr>
<tr>
<td>(B) aligned</td>
<td>0.000000110000</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(A - B)</td>
<td>0.100000110001</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Postnormalization</td>
<td>0.100000100011</td>
<td>(R) S</td>
<td></td>
</tr>
<tr>
<td>Before rounding</td>
<td>0.100000100011</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>After round-to-nearest</td>
<td>0.100000100010</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Adding ulp in rounding

- If $R=0$ no rounding required - sticky bit indicates whether final result is exact/inexact ($S=0/1$)
- If $R=1$ operation in round-to-nearest-even depends on S and least-significant bit (L) of result
- If $S=1$ rounding must be performed by adding ulp
- If $S=0$ - tie case, only if $L=1$ rounding necessary

Summary - round-to-nearest-even requires adding ulp to significand if $RS + RSL = R(S + L) = 1$
- Adding ulp may be needed for directed roundings
- Example: in round toward $+\infty$, ulp must be added if result is positive and either R or S equals 1
- Similarly - in round toward $-\infty$ when result negative and $R+S=1$

IEEE Format Rounding Rules

<table>
<thead>
<tr>
<th>LSB R S</th>
<th>Operation</th>
<th>$\pm error$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>-0</td>
<td>0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>$+0$</td>
<td>$-0.25 ulp$</td>
</tr>
<tr>
<td>0 1 0</td>
<td>-0</td>
<td>$-0.50 ulp$</td>
</tr>
<tr>
<td>0 1 1</td>
<td>$+0.5 ulp$</td>
<td>$+0.25 ulp$</td>
</tr>
<tr>
<td>1 0 0</td>
<td>-0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 1</td>
<td>$+0$</td>
<td>$-0.25 ulp$</td>
</tr>
<tr>
<td>1 1 0</td>
<td>$+0.5 ulp$</td>
<td>$+0.50 ulp$</td>
</tr>
<tr>
<td>1 1 1</td>
<td>$+0.5 ulp$</td>
<td>$+0.25 ulp$</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0.375 ulp</td>
</tr>
</tbody>
</table>

(a) Round-to-nearest-even scheme

<table>
<thead>
<tr>
<th>Sign R S</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>$+0$</td>
</tr>
<tr>
<td>0 1</td>
<td>$+1 ulp$</td>
</tr>
<tr>
<td>1 0</td>
<td>$+1 ulp$</td>
</tr>
<tr>
<td>1 1</td>
<td>$+1 ulp$</td>
</tr>
<tr>
<td>0 0</td>
<td>$+0$</td>
</tr>
<tr>
<td>0 1</td>
<td>$+0$</td>
</tr>
<tr>
<td>1 0</td>
<td>$+0$</td>
</tr>
<tr>
<td>1 1</td>
<td>$+0$</td>
</tr>
</tbody>
</table>

(c) Round-to-plus-infinity scheme

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$+0$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>$+1 ulp$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$+1 ulp$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>$+1 ulp$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>$+0$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>$+0$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$+0$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>$+0$</td>
</tr>
</tbody>
</table>

(b) Round-to-zero scheme

<table>
<thead>
<tr>
<th>Sign R S</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-0 0$</td>
<td>$+0$</td>
</tr>
<tr>
<td>$-0 1$</td>
<td>$+1 ulp$</td>
</tr>
<tr>
<td>$-1 0$</td>
<td>$+1 ulp$</td>
</tr>
<tr>
<td>$-1 1$</td>
<td>$+1 ulp$</td>
</tr>
<tr>
<td>$+0 0$</td>
<td>$+0$</td>
</tr>
<tr>
<td>$+0 1$</td>
<td>$+0$</td>
</tr>
<tr>
<td>$+1 0$</td>
<td>$+0$</td>
</tr>
<tr>
<td>$+1 1$</td>
<td>$+0$</td>
</tr>
</tbody>
</table>

(d) Round-to-minus-infinity scheme
Adding ulp in rounding

- Adding ulp after significands were added increases execution time of add/subtract
- Can be avoided – all three guard bits are known before significands added
- Adding 1 to L can be done at the same time that significands are added
- Exact position of L is not known yet, since a postnormalization may be required
- However, it has only two possible positions and two adders can be used in parallel
- Can also be achieved using one adder